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Abstract

Data binarization involves converting a continuous data attribute into a finite set of binary at-
tributes while minimizing information loss. It plays a crucial role in feature engineering in
the data mining analysis. Data binarization simplifies data, improves model training quality,
enhances model performance and interpretability of results, helping in understanding complex
patterns. In this paper we present an original data binarization framework, called angle-based
data binarization, that converts continuous attributes into discrete binary attributes. The pro-
posed framework allows not only to simplify machine learning models, but can also lead to the
improvement of the accuracy of a number of well-known traditional machine learning methods.
We present results of an extensive series of experiments which evaluate the efficiency of the
proposed method in the area of data classification. Using popular classification algorithms, we
compared classification quality achieved on source datasets with classification quality achieved
on their binarized versions. We also discuss binary attribute pruning, based on elimination of
attributes with poor discriminative power.

Keywords: data mining, discretization framework, continuous attributes, classification algo-
rithms

1. Introduction
Data which are subject to data mining analysis usually come from different data sources in a
variety of formats and data types. They are characterized by varying degrees of noise. Hence,
a very important step in the data mining process is data preprocessing that begins after the
collection of data and before the analytical steps of data mining. The data preprocessing phase
comprises a number of different techniques that can be used in data mining applications, such
as: data integration, data cleaning, data reduction, data transformation, and data conversion. The
last technique involves a conversion of a data set with a particular set of attributes into a data set
with another set of attributes of a different type [1].

The conversion method that plays an absolutely crucial role in feature engineering in data
mining analyses is data discretization. By grouping similar data objects into bins, random varia-
tions or noise in the data are minimized. It also improves classification model performance since
many machine learning algorithms perform better with discrete data, as they handle discrete at-
tributes more effectively. Finally, data discretization improves the result interpretability since
discretized data are easier to understand and interpret, particularly when making data-driven de-
cisions. When data discretization results in binary attributes, it is referred as data binarization.

There are numerous discretization methods available in the literature. These methods can
be categorized across several dimensions: static vs. dynamic, supervised vs. unsupervised, or
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local vs. global, etc. Another popular classification of discretization methods distinguishes:
discretization by binning, discretization by histogram analysis, entropy-based discretization,
discretization by clustering. As follows from a comprehensive survey of data discretization
methods [14], choosing a suitable discretization method is generally a complex problem and
largely depends on user’s need and available information concerning attribute values distribution
and class labels. If no information concerning class labels is available, only simple unsupervised
methods can be applied (e.g. binning). When the information is available, supervised methods
can be applied (e.g. entropy-based discretization or error-based). The main findings of the
survey as well as of some other works presenting and discussing discretization methods are
rather consistent and point toward entropy-based discretization method (MDLP – minimum
description length principle) being identified as the first choice.

In this paper we present an original data binarization framework, called angle-based data
binarization, that converts numeric attribute values into binary attribute values. The framework
uses angles instead of plain distance measures while converting data. The proposed binariza-
tion framework, on one side, allows to simplify a classification model due to binary attributes
being used, on the other side, can lead to significant improvement of the accuracy of a num-
ber of well-known traditional classification methods (e.g. kNN algorithm) which carried out in
multidimensional feature space are characterized by bias and degradation of performance.

The idea of the framework refers to the theatrical stage lighting metaphor. A theatrical stage
is given, on which there are objects of various types (people, elements of scenery, etc.), and a
set of spotlights illuminating these objects. The task of the lighting director is to determine the
number and location of spotlights in such a way as to be able to illuminate each object (or type
of an object) separately. Similarly, our task is to determine the number and location of a set of
spotlights that will be able to illuminate objects of different classes separately. The spotlights
will then be used to generate binary attributes that will replace the original, numeric attributes
of the data objects.

To simplify the problem of determining the number and position of spotlights in a multi-
dimensional space, we decompose it into problems of searching for the “optimal” number and
position of spotlights in 2-dimensional projections of the input datasets. So, for the input data
set D of dimension m we generate

(
m
2

)
projections of D. For each projection of D and for each

class we search for the “optimal”number and position of spotlights. A set of spotlights for a
given projection and a given class is called a spotlight layout.

In our framework, we consider each spotlight layout as a binary variable. For each data
object, if the object is illuminated by the set of spotlights belonging to a given spotlight layout,
then the value of the variable associated with the spotlight layout for the object is 1, otherwise
0. The proposed binarization framework is based on three basic concepts: on the use of a set
of spotlights, on the use of angles, instead of plain distances, and on the use of “one versus all”
(OVA) approach. The framework consists of a few steps. For each 2-dimensional projection of
the input dataset, we find the optimal spotlight layouts to let us separate objects of a given class
(one class at a time - OVA). To find the optimal spotlight layout, we iteratively add spotlights to
the scene and we set them in such a way as to maximize object separation accuracy. Spotlight
settings involve: the position, the light beam direction and the light beam angle. The number of
spotlights in a spotlight layout is dynamic since we keep adding spotlights until no further im-
provement is observed. After all the spotlight layouts have been generated for all 2-dimensional
projections and all classes, we start the conversion of the dataset objects. For each dataset ob-
ject, binary attributes are generated by observing whether the projected object is illuminated by
the spotlight layout or not.

Example (Leading example). Let us consider the sample dataset D consisting of four data
objects in 3-dimensional space belonging to two classes c = c1 and c = c2 (see Fig. 1 and
Tab. 1). We generate

(
3
2

)
2-dimensional projections of the data set D (see Fig. 2). For each
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Table 1. Original input data set D

data object a1 a2 a3 class

1 2 1 1 c1
2 4 1 1 c2
3 2 4 1 c1
4 1 1 4 c2

Fig. 1. Input data set D

2-dimensional projection and for each class ci we are looking for a set of spotlights that will
”best separate” objects of a given class from objects of other classes (OVA approach). By ”best
separates” objects of a given class from objects of other classes, we mean that the light streams
of the generated set of spotlights illuminate objects of a given class and do not illuminate objects
of other classes. Sample spotlights layouts for classes c1 and c2, for dataset projections (a1, a2),
(a1, a3) and (a2, a3), are depicted in Fig. 3. It is easy to notice that the spotlight layout for the
a1, a2 projection, for the class c = c1, perfectly separates objects of the class c1 from objects of
c2, while spotlight layouts for a1, a3 and a2, a3 projections illuminate objects of both classes. As
we mentioned above, in our framework, we consider each spotlight layout as a binary variable.
For each data object, if the object is illuminated by the spotlight layout, then the value of the
variable associated with this spotlight layout for the object is 1, otherwise 0. The result of the
conversion of the sample dataset D (see Tab. 1) is presented in Tab. 2. The notation ciakal
stands for spotlight layout for the projection (akal) for the class ci.

2. Basic Definitions
Assume a dataset D = {i1, i2, . . . , iN}, containing tuples (records) ii in the form
(a1, a2, . . . , an, c), where aj is an attribute and c is a class label. Dataset binarization func-
tion b : Da → Db maps each tuple (a1, a2, . . . , an, c) ∈ Da, where aj is a normalized
continuous attribute (aj ∈ ⟨−1; 1⟩), into a tuple (b1, b2, . . . , bm, c) ∈ Db, where bj is a bi-

Fig. 2. 2-attribute projections of the dataset D



M. ZAKRZEWICZ, T. MORZY ANGLE-BASED DATA BINARIZATION FRAMEWORK

Fig. 3. Spotlights layouts for projections

Table 2. Converted data set.

data object c1a1a2 c1a1a3 c1a2a3 c2a1a2 c2a1a3 c2a2a3 class

1 1 1 1 1 1 1 c1
2 0 0 1 1 1 1 c2
3 1 1 1 0 1 0 c1
4 0 0 0 1 1 1 c2

nary attribute (bj ∈ {0, 1}). Dataset projection function πak,al : Da → Dp maps each tuple
(a1, a2, . . . , an, c) ∈ Da into a tuple (ak, al, c) ∈ Dp. A spotlight si is represented as a triple
(centeri, beam left edgei, beam right edgei), where centeri is the angle of the spotlight on
the circle around the stage, beam left edgei and beam right edgei represent angles of the
light beam edges on the circle around the stage (see Fig. 4). An object o is illuminated by the
spotlight si, denoted as o ∈ si, if the object is covered by the spotlight shape (angle). A spot-
light layout l is a set of spotlights {s1, s2, . . . , sk}, placed around the stage in order to extract
objects of a specific class. In order to assess extraction efficiency of a given spotlight layout,
we introduce spotlight layout discriminativeness measure d (l, πak,al (D) , c), where l is the
spotlight layout, D is the dataset, ak and al are projection attributes, and c is a class label. The
measure is based on the concept of statistical accuracy and imbalanced classes weighting, and
is defined as follows:

d (l, πak,al (D) , c) =
|i ∈ πak,al(D) : class(i) = c and ∀sk∈l i ∈ sk| · wTP (c)

|D|
+

+
|i ∈ πak,al(D) : class(i) ̸= c and ∀sk /∈l i /∈ sk| · wFP (c)

|D|

where:

wTP (c) =
|D|

2 · |{i : class(i) = c}|

wFP (c) =
|D|

2 · |{i : class(i) ̸= c}|
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Fig. 4. Sample spotlight si = (120, 295, 335)

Fig. 5. Sample spotlight

Example. Consider the dataset projection π(D) and 2-spotlight layout l in Fig. 5. In order to
evaluate the spotlight layout discriminative measure for classA, we calculate wTP (classA) =
7/(2 ·4) = 7/8, wFP (classA) = 7/(2 ·3) = 7/6, and finally d(l, π(D), classA) = (3 ·(7/8)+
3 · (7/6))/7 = 0.875 (or 87.5%).

2

A binarization model m(D) is a set of spotlight layouts generated for each class c ∈ C and
for each projection πak,al(D), i.e. m(D) = {l(c1, a1, a2), l(c1, a1, a3), . . . , l(ck, an−1, an)},
where l(cm, an, ap) is a spotlight layout for class cm and dataset projection πan,ap(D). Notice
that |m(D)| = number of classes · number of attributes · (number of attributes − 1)/2.

The dataset binarization function b(D) based on the binarization model m(D) maps each
tuple (a1, a2, . . . , an, c) into (b1,1,2, b1,1,3, . . . , bk,n−1,n, c) in the following way:

b1,1,2 = 1 if (a1, a2) is illuminated by all spotlights in l(c1, a1, a2), 0 otherwise,
b1,1,3 = 1 if (a1, a3) is illuminated by all spotlights in l(c1, a1, a3), 0 otherwise,

· · ·
bk,n−1,n = 1 if (an−1, an) is illuminated by all spotlights in l(ck, an−1, an), 0 otherwise.

3. The Data Binarization Method
The proposed data binarization method is a two-phase approach: first build a binarization model
for the dataset, then use the binarization model to map dataset tuples into binary tuples. In order
to build the binarization model, we determine optimal spotlight layouts for each class and for
each 2-attribute dataset projection. The optimal spotlight layouts are generated by iteratively
adding new spotlights and finding positions and beam angles that maximize spotlight layout
discriminativeness. The spotlights are added to the spotlight layout as long as they are improv-
ing the discriminativeness, therefore different spotlight layouts may have different numbers of
spotlights.
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Phase I: Generate the Binarization Model m(D)

foreach class c, foreach pair (ak, al) of attributes of D:
start with empty spotlight layout l = ∅
iteratively add new spotlights to the l,

positioning them around the stage to maximize d(l, πak,al(D), c)
stop adding spotlights when d(l, πak,al(D), c) does not get improved any more

In the second phase, we process tuples from the source dataset and generate new tuples by
executing the binarization function based on the generated binarization model.

Phase II: Preprocess dataset D using the Binarization Model m(D)

foreach tuple i ∈ D:
foreach spotlight layout l:

if i is illuminated by all spotlights from l
then output 1;
else output 0;

Finding optimal spotlight layouts. The most important task in our method is to find the “opti-
mal” spotlight layouts for all classes. The construction of a spotlight layout for a given class is
performed as follows. We are moving the first spotlight around the stage to find a spotlight cen-
ter angle that provides the best spotlight layout discriminativeness. Initially, the spotlight beam
edges are configured to exactly embrace all the class’ objects. Once the first spotlight has been
set, we add the second spotlight and follow the same method to find its optimal location. We
keep adding spotlights until they no more improve the spotlight layout discriminativeness. After
the spotlights’ center angles have been determined, we revisit each spotlight and try to narrow
the beam edges in hope to further improve the spotlight layout discriminativeness. The process
ends after all the beams have been optimized. Then, we perform the same procedure for the
next class. Constructing spotlight layouts for all classes completes phase I of the binarization
method. All constructed spotlight layouts constitute the binarization model m(D).

Spotlight distance. The spotlights’ distances from the stage may influence the observed dis-
criminativeness. Our current implementation of the binarization method performs best if all
spotlights are placed on a circle with radius equal to double or triple the stage width. We believe
that using nonuniform spotlight distances within a spotlight layout would also be beneficial to
maximize discriminativeness.

Alternative spotlight layout discriminativeness measures. Our discriminativeness measure
is based on the concept of statistical accuracy and imbalanced classes weighting. Alterna-
tive measures can also be deployed. We have experimentally verified measures inspired by
F-score, prevalence, true positive rate, positive likelihood ratio, and informedness, however, the
accuracy-based indicator resulted in the best binarization quality.

Alternative binarization functions. When mapping source dataset tuples into binary tuples, a
projected object must be illuminated by all spotlights in a spotlight layout in order to be mapped
to 1. However, other approaches can also be considered. For example, we may require that
objects are illuminated only by majority of spotlights to result in 1s. Spotlight order can also be
taken into account as sort of a weight, as spotlights added first seem to have stronger influence
on the discriminativeness than those added later.

Dimensionality reduction in the binarized dataset. The binarized dataset will have more at-
tributes than the source dataset (number of classes x number of source attributes x (number of
source attributes - 1) / 2). To reduce the number of resulting binary attributes, we can add a
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Table 3. Summary of Data Sets.

Data set Records Features Classes Binary Features

Rice 3810 8 2 42
Abalone 4177 8 3 84
Yeast 1484 8 10 280
Wine Quality White 4873 12 5 385
Breast Cancer Wisconsin 699 9 2 72

pruning step to the spotlight layout generation phase. Spotlight layouts that provide discrimina-
tiveness below a predefined threshold will be eliminated from the binarization model. We ob-
served that eliminating 10-20% of the weakest binary attributes would even improve the quality
of the binarization.

Datasets containing non-numerical attributes. Our binarization method assumes that all
source dataset attributes are continuous and normalized because we need to project dataset tuples
as 2-dimensional objects in Cartesian coordinate system. To use our method for datasets that
contain categorical attributes, we recommend that binarization covers the continuous attributes
only, leaving the categorical ones intact. The resulting dataset will be binarized “partially”, but
we will still be able to benefit from its characteristics. Another way to deal with categorical
attributes is to map them to n additional binary attributes, using one-hot encoding.

4. Experimental Evaluation
Although the main goal of the paper is to propose a method for converting numerical data into
binary data, we did perform an extensive series of experiments in order to evaluate the efficiency
of the method in the area of data classification. Using popular classification algorithms provided
by Weka framework [6], we compared classification quality achieved on source datasets with
classification quality achieved on their binarized versions. No dimensionality reduction was
applied.

We used 5 popular data sets obtained from the UCI repository (see Tab. 3). The data sets
had various sizes and varying numbers of features, they were not subjected to any pre-processing
techniques except for the deletion of records containing incomplete data or data in an erroneous
format. In addition, the Table shows the numbers of binary attributes generated by the binariza-
tion (Binary Features). The experiments were performed using The Waikato Environment for
Knowledge Analysis (WEKA) version 3.8.6, using various classification algorithms, including:
Random Forest, Random Tree, J48 (C4.5), RepTree, IBk (kNN), Simple Logistic (linear logistic
regression), AdaBoost M1, and Naive Bayes, all run with default parameter settings [4], [8], [7].
The classification model performance was evaluated by 10-fold cross-validation.

To better understand the quality of our proposed angle-based binarization method, we also
ran a series of experiments which evaluated the usefulness and efficiency of the proposed method
in comparison to known and widely used discretization methods in the area of data classification:
equi-frequency binning and entropy-based discretization (MDLP), a state-of-the-art discretiza-
tion algorithm [12]. Finally, we also present and discuss our results on binary attribute pruning,
based on elimination of attributes with poor discriminative power.

Experimental Results – Original Dataset vs Binarized Dataset Representation. The results
are shown in Tab. 4, using bold formatting to emphasize best results. The column Original
Dataset shows the quality of data classification achieved with the original dataset. The column
Angle-based Binarization shows the quality of data classification achieved with the binarized
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dataset. It is worth noting that in most cases the binarized dataset representation allows us to
reach higher accuracy values. The best classifiers for binarized datasets were not necessarily the
same as the best classifiers discovered for original datasets as not every classification algorithm
benefits from binary dataset format. The observed number of spotlights in optimal spotlight
layouts varied between 2 and 13, depending on datasets and attributes used for projection.

Experimental Results – Comparison of Discretization Methods. The column One-Hot Equi
Freq of Tab. 4 presents the quality of data classification observed on the dataset discretized
using equi-frequency binning and one-hot encoding. Each continuous attribute was discretized
into one of ten equal frequency bins, and then it was converted to ten binary attributes using
one-hot encoding. The number of bins (ten) was selected in order to get a similar number of
binary columns for the solutions being compared. We were able to observe much worse results
compared to those from our angle-based binarization. Finally, the column Entropy Discr shows
the quality of data classification achieved on a dataset discretized using MDLP version entropy-
based discretization algorithm. In 32 test cases out of 45, our angle-based binarization method
outperformed the entropy-based discretization.

Experimental Results – Attribute Pruning. We also analyzed effects of binary attribute prun-
ing, based on elimination of spotlight layouts with poor discriminativeness (below specified
threshold). Tab. 5 shows classification quality (accuracy) achieved using binarized datasets
with different pruning settings. We have not observed significant degradation of classification
quality even for heavily pruned binarized datasets, eg. for Breast Cancer Wisconsin dataset,
pruning of 84% of binary attributes resulted in classification quality drop from 97.90% to only
97.52% (Naive Bayes).

Analysis of results. Summing up the presented results of the experiment, the following can be
stated. First, the proposed framework improves the classification quality for most of analyzed
data sets and classification methods, outperforming the commonly used discretization methods.
Second, the computational complexity of data binarization is not expensive as the number of
required spotlights per a spotlight layout was relatively low. Third, prunning of binary attributes
helped significantly reduce the dimensionality without significant degradation of classification
quality.

5. Related Work
There exists a very extensive literature on data preprocessing, particularly, related to data inte-
gration, data cleaning, feature selection or data transformation. A broad discussion of the basic
methods of data preprocessing can be found in [1]. A detailed survey of various data cleaning
techniques is provided in [10]. Data integration techniques, such as record linkage and data
fusion, are discussed in [2].

Many discretization methods were described in the literature. A comprehensive survey of
discretization methods, their comparison, effect on classification is given in Liu et al. [14]. The
simplest method to discretize a continuous-valued attribute is binning. This top-down unsuper-
vised splitting technique involves dividing attribute continuous values into a specified number
of bins. Equal-width or equal-frequency binning can be applied, followed by replacing each bin
value with the bin mean or median. It is possible to improve the quality of binning by using class
labels information to adjust boundaries of neighboring bins [3], [9]. Discretization by histogram
analysis, like binning, is an unsupervised technique that partitions attribute continuous values
into disjoint ranges (buckets or bins). Histograms are effective for approximating sparse, dense,
skewed, and uniform data. Various partitioning rules can be used to define histograms. This
kind of discretization is commonly used by query optimizers in databases [17].

Entropy-based discretization method uses the entropy measure to determine the “best” par-
titions of the attribute values for discrete intervals. Different variants of the entropy-based dis-
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Table 4. Classification quality on binarized data (% of correctly classified instances)

Dataset Classifier Original One-Hot Entropy Angle-based
Dataset Equi-Freq Discr Binarization

Rice Random Forest 91.88 90.79 91.18 92.23
Random Tree 88.80 88.94 91.46 92.26
J48 92.93 91.67 92.96 92.93
RepTree 92.30 91.74 92.79 92.37
kNN 88.38 90.06 91.63 92.61
Simple Logistic 92.61 91.74 93.00 92.47
AdaBoost M1 92.96 84.74 92.61 92.33
Naive Bayes 91.46 91.11 91.49 92.93
Bagging 92.51 91.81 92.79 92.54

Abalone Random Forest 54.31 51.66 52.71 54.92
Random Tree 48.66 50.06 52.49 54.02
J48 52.14 53.32 53.64 54.79
RepTree 54.05 52.33 54.25 54.95
kNN 50.57 50.96 53.45 54.12
Simple Logistic 55.59 52.49 52.84 56.58
AdaBoost M1 53.70 44.19 48.02 55.04
Naive Bayes 51.79 51.69 52.30 51.66
Bagging 54.76 53.10 53.54 56.42

Breast Cancer Random Forest 97.71 97.14 96.76 97.33
Random Tree 95.42 92.94 94.66 97.52
J48 94.66 93.70 96.00 96.38
RepTree 95.23 93.89 95.42 96.95
kNN 96.37 96.76 96.76 97.90
Simple Logistic 97.14 96.18 96.00 96.76
AdaBoost M1 94.66 95.61 95.80 97.14
Naive Bayes 96.37 96.95 97.90 97.90
Bagging 97.33 94.66 96.18 97.14

Wine Quality Random Forest 65.86 65.48 57.24 68.03
Random Tree 57.68 56.36 53.87 58.28
J48 56.69 53.39 55.41 57.84
RepTree 55.27 52.68 54.34 52.09
kNN 59.79 61.72 55.52 61.24
Simple Logistic 53.71 53.34 54.94 58.23
AdaBoost M1 45.06 45.82 44.59 51.96
Naive Bayes 45.17 48.57 49.74 39.72
Bagging 60.25 57.96 55.84 61.40

Yeast Random Forest 59.75 54.81 54.72 61.28
Random Tree 47.62 43.49 54.27 49.60
J48 53.19 50.13 57.77 53.73
RepTree 56.78 53.55 57.05 54.36
kNN 51.93 47.44 54.45 51.84
Simple Logistic 57.23 56.06 56.33 61.19
AdaBoost M1 40.25 37.29 40.25 39.53
Naive Bayes 56.24 55.89 55.62 57.86
Bagging 60.56 55.08 56.87 60.65
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Table 5. Effects of binary attribute pruning

Dataset Classifier Pruning threshold Accuracy

Yeast Random Forest no pruning 61.28
threshold = 0.6 (22% pruned) 61.10
threshold = 0.65 (40% pruned) 59.57
threshold = 0.75 (56% pruned) 55.26

Naive Bayes no pruning 57.86
threshold = 0.6 (22% pruned) 58.22
threshold = 0.65 (40% pruned) 57.50
threshold = 0.75 (56% pruned) 54.36

Breast Cancer Wisconsin Random Forest no pruning 97.33
threshold = 0.6 (22% pruned) 97.90
threshold = 0.65 (40% pruned) 97.90
threshold = 0.75 (56% pruned) 96.38

Naive Bayes no pruning 97.90
threshold = 0.6 (22% pruned) 97.52
threshold = 0.65 (40% pruned) 97.90
threshold = 0.75 (56% pruned) 97.52

cretization method can be found in literature. These variants differ either in the choice of the
cut points or in the stopping criterion of the discretization procedure. Entropy-based discretiza-
tion method with C4.5 algorithm is described in [18]. In [5] the minimum description length
principle (MDLP) is employed to determine a stopping criterion for the discretization procedure.

In [16] an error-based discretization algorithm is presented. The algorithm discretizes at-
tribute continuous values by producing a set of intervals that result in the minimum error on the
training dataset. The discretization methods presented above do not exhaust the list of possible
approaches. ChiMerge and Chi2, presented in [11], [15], are supervised discretization algo-
rithms that both apply the χ2 measure to conduct a significance test on the relationship between
the attribute values and the class labels. The χ2 statistic determines the similarity of adjacent
intervals of an attribute based on some significance level. The discretization by cluster analysis
is briefly presented in [7].

One previous research effort is also partially related to our method. In [13] a new approach to
outliers detection in high-dimensional data space was presented based on the use of variance of
angles between objects in a dataset. The use of angle measure eliminates the phenomenon of the
curse of dimensionality, which is a problem with using distance measures in high-dimensional
data. Our framework refers to the presented idea of using angles instead of plain distances in
multidimensional space.

However, none of the prior studies propose the use of angles to discretize values of contin-
uous attributes.

6. Conclusions and Summary
In this paper we have introduced a new data conversion framework to handle one of the data
preprocessing steps in the data mining process. The concept was inspired by the theatrical stage
lighting metaphor, where spotlights were used to extract scene objects. We perform projections
of multidimensional tuples into 2-dimensional points and generate optimal spotlight layouts
in order to best extract points belonging to a specific class. Then, for each dataset tuple, the
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spotlight layouts are used to produce binary output attributes with the value of “1” (if a projected
point belongs to fully illuminated area of the stage) or “0” (otherwise). In result, we obtain a
binary-only representation of the original dataset.

We have showed that the binarized datasets can not only simplify the classification process
due to binary attributes being used, but can also improve the accuracy of well-known classi-
fication methods when compared to the original dataset scenario. Our extensive experiments
demonstrated that the binarized datasets can easily replace the original datasets in the data min-
ing process and that the quality of achieved data mining results is far better than provided by e.g.
straightforward binning-based one-hot conversion of numerical attributes to binary attributes.
The key reasons why the proposed angle-based binarization method leads to better classifica-
tion quality include: operating on 2-dimensional tuple projections instead of on the original
multidimensional representations (or on single attributes only), using 2-dimensional angles in-
stead of multidimensional distances, and one-versus-all approach to extract single class’ objects
from objects belonging to all other classes.

We are also researching other application areas of the theatrical stage lighting metaphor,
which are out of the scope of this paper - e.g. using spotlight layouts as a standalone classifica-
tion model.
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