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Abstract

This paper presents a privacy-preserving framework for distributed neural network modeling
across heterogeneous data sources, where local datasets differ in both objects and attributes. To
enable collaborative learning without sharing raw data or model parameters, each local decision
table is independently transformed into a unified feature space using multiple dimensionality
reduction techniques – Principal Component Analysis (PCA), Singular Value Decomposition
(SVD), and Uniform Manifold Approximation and Projection (UMAP). Various types of neural
networks – Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Simple Recur-
rent Network (SIMPLE), Multilayer Perceptron (MLP) and the Radial Basis Function Network
(RBF) – are trained locally, and their outputs are aggregated using soft voting (simple average) to
generate final predictions. Experimental results on benchmark datasets confirm the approach’s
effectiveness, scalability, and robustness in decentralized learning settings.

Keywords: decentralized learning, heterogeneous data, feature transformation, neural networks,
dispersed data.

1. Introduction
Modern machine learning increasingly operates in distributed environments, such as hospitals
banks or research institutions, where data is siloed across different locations due to privacy,
security or regulatory constraints. A growing challenge in such settings is the need to learn pre-
dictive models from fully heterogeneous data, where each local repository stores its own dataset
with unique features and distinct records. These locally stored datasets – hereafter referred to
as local tables – often differ not only in their content but also in structure, rendering traditional
distributed or federated learning approaches inadequate.
Federated learning addresses some aspects of decentralized data by enabling collaborative model
training without sharing raw data. However, it generally assumes a shared feature space across
all local datasets and requires parameter synchronization during training. These assumptions
break down in scenarios where local tables are structurally different, such as hospitals recording
patient data with differing diagnostic tools, or environmental sensors deployed in diverse geo-
graphic regions. In such real-world cases, a more flexible and privacy-preserving approach is
required.
This paper introduces a novel framework for decentralized neural network modeling over struc-
turally heterogeneous data sources. Each local table is independently transformed into a compat-
ible feature space using dimensionality reduction techniques, enabling interoperability without
exposing original data structures. Unlike conventional federated learning, our method avoids
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parameter exchange and ensures that the architecture and internal workings of local models re-
main opaque, reducing vulnerability to reverse-engineering or inference attacks.
The framework is general and supports a variety of transformation techniques. In this study, we
use PCA, SVD and UMAP to project each local table into a k-dimensional feature space. Inde-
pendent neural network models are trained locally using different architectures – MLP, SIMPLE,
GRU, LSTM, and RBF networks. Their predictions are then aggregated via soft voting (simple
average), avoiding raw data exchange and model synchronization.
We evaluate the proposed method on benchmark datasets from the UCI Machine Learning
Repository, which were artificially partitioned into non-overlapping, heterogeneous local ta-
bles. Results demonstrate the scalability, robustness, and privacy-preserving characteristics of
our approach, making it suitable for multi-institutional collaboration in sensitive domains.
The main contributions of this work are as follows:

1. A novel framework for decentralized learning over fully heterogeneous data, addressing
structural disparities that traditional federated learning cannot handle.

2. Use of dimensionality reduction (PCA, SVD, UMAP) to project heterogeneous decision
tables into a shared feature space while preserving privacy.

3. An architecture-agnostic training approach where each center independently trains neural
network models, preserving local data confidentiality without sharing model parameters.

The rest of the paper is structured as follows: Section 2 reviews related work. Section 3 out-
lines the proposed framework, including feature transformation, model training and aggregation
strategy. Section 4 presents experimental validation using datasets from the UC Irvine (UCI)
Machine Learning Repository. Finally, Section 5 concludes with a discussion of applications,
limitations and directions for future research.

2. Literature review
Distributed machine learning has advanced rapidly in recent years, with significant focus on
handling data heterogeneity, ensuring privacy preservation and improving computational effi-
ciency. Federated learning (FL), established a framework for training global models without
centralizing data, thereby preserving user privacy [14]. However, standard FL approaches often
assume a shared feature space across clients and struggle with non-independent and identically
distributed (non-IID) data [14], [20]. Several works have proposed solutions to address these
challenges, including personalized FL [23] and communication-efficient protocols [9].
Privacy-preserving techniques have been further developed to mitigate risks such as attribute in-
ference or model inversion attacks. Differential privacy [1] and secure multi-party computation
[21] have been integrated into FL frameworks to strengthen data confidentiality. Nonetheless,
these methods generally assume consistent feature sets and require complex cryptographic op-
erations, limiting scalability in heterogeneous environments [4].
Feature extraction and dimensionality reduction techniques play a pivotal role in addressing data
heterogeneity. PCA, SVD, and nonlinear methods such as UMAP have been widely employed
to reduce feature dimensionality while preserving relevant information [3]. Recent studies have
explored distributed implementations of such techniques to enable privacy-preserving feature
extraction, such as the work by Fontenla-Romero et al. [7] which uses local SVD computations
in decentralized anomaly detection scenarios.
Ensemble learning and voting mechanisms have been extensively used to improve robustness
and accuracy in distributed systems. Techniques such as soft voting, bagging, and boosting
aggregate predictions from multiple local models to form a consensus decision without requir-
ing parameter sharing [18], [25]. This paradigm not only enhances predictive performance but
also contributes to privacy preservation by avoiding the need to exchange raw data or model
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parameters [5]. Despite these advances, a critical gap remains in effectively handling fully het-
erogeneous datasets where neither the object sets nor the attribute spaces overlap across local
data centers. Existing FL methods like FedAvg [14] assume partial alignment of data or re-
quire costly synchronization that may leak sensitive information [15]. Moreover, most feature
extraction approaches presuppose consistent features across clients, limiting their applicability
in realistic multi-institutional collaborations where data heterogeneity is intrinsic.
The proposed framework addresses these challenges by unifying structurally incompatible lo-
cal datasets through dimensionality reduction (PCA, SVD, UMAP) and integrating independent
neural network models using soft voting (simple average). While the main objective and contri-
butions are detailed in the introduction, this work uniquely addresses the limitations of existing
FL systems by combining transformation-based compatibility with model-level aggregation in
a privacy-preserving, structure-independent setting.

3. Methods and models
Let Di = (Ui, Ai, d), for i = 1, . . . , n, represent a set of heterogeneous decision tables from
distributed data centers, where Ui is a set of objects, Ai is a set of attributes, and d is the de-
cision attribute. These tables may differ in both objects and features – a situation common in
domains like healthcare, where a patient may visit multiple hospitals with distinct but partially
overlapping diagnostic attributes.
Each local dataset is transformed into a uniform feature space using multiple feature extraction
techniques. Given a fixed dimensionality k, each transformation (PCA, SVD, UMAP) maps
Di into a set Hk

i = {(Ui,Ak
i , d)1, . . . , (Ui,Ak

i , d)T }. These are then horizontally concatenated
to form a unified table Ck

i , while maintaining local independence and privacy – no raw data or
transformation parameters are exchanged between sites.
PCA and SVD [2], [13] provide linear projections to reduce noise and highlight global structure,
while UMAP [10] captures nonlinear patterns by preserving local and global topology. Their
combined use enhances representational diversity, making the transformed features robust and
expressive. Each Ck

i is used to train an independent neural network. We evaluate five architec-
tures: MLP, RBF, GRU, LSTM, and Simple RNN. MLPs serve as baselines for tabular data [12];
RBFs provide local sensitivity [22]; GRUs and LSTMs capture temporal patterns, with GRUs
being more computationally efficient whiles Simple RNNs offer a lightweight benchmark [16]
At inference, a test sample x is transformed using the same feature extractors, yielding X k =
[xkPCA, x

k
SV D, x

k
UMAP ] and input into each of the n local models. Their outputs are combined

via soft voting (simple average) to produce the final prediction. This two-stage framework –
transformation followed by local modeling and decentralized voting ensures privacy, accommo-
dates data heterogeneity, and avoids synchronization overhead.
While transforming local tables into a uniform feature space may incur some degree of informa-
tion loss, this is mitigated by using a diverse set of transformation maps (PCA, SVD, UMAP).
Each method emphasizes different structural aspects of the data (linear variance, latent structure,
non-linear manifold). As such, the concatenation strategy recovers complementary information,
which increases the likelihood that essential patterns are preserved across maps. Figure 1 illus-
trates the entire pipeline.

4. Experiments
The experimental assessment of the framework is achieved by conducting tests on three separate
and distinct UCI datasets, namely the Landsat Satellite – 36 attributes, 6 decision classes and
6,435 objects (4,435, training, 2,000 test) [19]; Crowdsourced Mapping – 28 attributes, 6 deci-
sion classes and 10,844 objects (7,590 training, 3,254 test) [11] and Anuran Calls – comprising
22 attributes, 4 decision classes and 7,195 objects(5,036 training, 2,159 test) [6].
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Fig. 1. Model generation and prediction for test object stages.

Each of the datasets is initially available in a non-dispersed form, with all data organized within
a single decision table. The training sets are then dispersed, considering varying degrees of dis-
persion. Each individual data set is transformed into five different dispersed versions, with the
dispersions consisting of 3, 5, 7, 9, and 11 local tables, respectively. During the creation of these
local tables, a subset of attributes from the original data set is chosen for each table. The number
of attributes in each local table is significantly reduced compared to the original decision table,
although certain attributes are repeated across different local tables to ensure that some overlap
exists among them. This overlapping is crucial because it allows for the possibility that some
local tables may share common attributes. Three transformation maps (PCA, SVD, UMAP)
and five neural network models (GRU, LSTM, MLP, RBF and SIMPLE) were considered in the
experiments.
Experiments varied model architectures and hyperparameters, including hidden layer depths (1-
3) and the number of principal components k (ranging from 1 to the feature count of the smallest
local table). Hidden layer sizes were scaled relative to the input dimension (I) – for 1 layer –
{4, 6, 9, 12, 20} × I; 2 layers – {(4,2), (5,3), (6,3), (8,4), (10,5), (12,6), (15,9), (20,10)} × I; 3
layers – {(4,3,2), (6,5,4), (7,5,3), (8,4,2), (10,7,3), (12,6,3), (15,9,4), (20,10,5)} × I .
Tested models included RBF (1 layer), GRU, LSTM, SIMPLE (1-2 layers), and MLP (1-3 lay-
ers). Architectural choices reflect each model’s structural limitations and capabilities: recurrent
models were restricted to shallow configurations to mitigate overfitting and gradient instability,
while MLPs were explored more extensively due to their capacity for deep feature learning.
These settings were selected to balance expressiveness and stability across architectures.
Model performance is evaluated using standard metrics: accuracy, precision, recall, and F1-
score, with the latter providing a balanced measure under class imbalance. Each experiment
was repeated three times, and average results are reported. Full results for MLP are provided
in Table 1, while Tables 2–5 present selected outcomes for other architectures. Reported values
correspond to optimal network configurations for each k, with best accuracy results highlighted
in bold.

As can be seen, MLP and SIMPLE networks consistently achieved the highest accuracy and
F-measure scores, particularly on the Satellite and Anuran datasets. For instance, MLP reached
0.855 accuracy on Satellite and 0.914 on Anuran, while SIMPLE achieved similar or better
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Table 1. Results of prec., rec., F-m, acc, for MLP; config denotes neurons in the hidden layers.

Data No. k Performance metrics config k Performance metrics configset tables prec. rec. F-m acc. prec. rec. F-m acc.
Satellite 1 0.515 0.51 0.477 0.51 (15;9)×I 6 0.839 0.832 0.825 0.832 (20;10;5)×I

2 0.709 0.734 0.694 0.734 (10;7;3)×I 7 0.851 0.843 0.836 0.843 (15;9;4)×I
3 3 0.822 0.825 0.811 0.825 (2;10;5)×I 8 0.857 0.853 0.847 0.853 (20;10;5)×I

4 0.837 0.832 0.821 0.832 (20;10;5)×I 9 0.857 0.855 0.847 0.855 (20;10;5)×I
5 0.833 0.828 0.817 0.828 (20;10;5)×I 10 0.856 0.855 0.847 0.855 (15;9;4)×I
1 0.546 0.539 0.489 0.539 (20;10)×I 5 0.853 0.852 0.843 0.852 (15;9;4)×I
2 0.677 0.708 0.655 0.708 (15;9;4)×I 6 0.835 0.835 0.825 0.835 (15;9;4)×I

5 3 0.826 0.818 0.801 0.818 (15;9)×I 7 0.849 0.852 0.843 0.852 (15;9;4)×I
4 0.84 0.836 0.821 0.836 (20;10)×I 8 0.839 0.836 0.817 0.836 20×I
1 0.53 0.517 0.442 0.517 (15;9)×I 4 0.82 0.818 0.788 0.818 (15;9;4)×I

7 2 0.711 0.77 0.719 0.77 (20;10;5)×I 5 0.841 0.836 0.816 0.836 (20;10;5)×I
3 0.825 0.808 0.768 0.808 (20;10;5)×I

9 1 0.54 0.542 0.476 0.542 (20;10)×I 3 0.803 0.798 0.756 0.798 (20;10;5)×I
2 0.71 0.768 0.717 0.768 (20;10;5)×I

11 1 0.411 0.474 0.404 0.474 (15;9)×I 3 0.821 0.813 0.773 0.813 (20;10;5)×I
2 0.71 0.767 0.715 0.767 (20;10;5)×I

Crowd 1 0.479 0.692 0.567 0.692 4×I 6 0.782 0.778 0.711 0.778 (20;10;5)×I
sourced 2 0.479 0.692 0.567 0.692 4×I 7 0.793 0.79 0.736 0.79 (20;10;5)×I

3 3 0.588 0.732 0.635 0.732 (20;10;5)×I 8 0.756 0.784 0.725 0.784 (15;9;4)×I
4 0.734 0.761 0.675 0.761 20×I 9 0.813 0.8 0.753 0.8 (15;9;4)×I
5 0.712 0.768 0.692 0.768 (15;9;4)×I 10 0.8 0.802 0.757 0.802 (20;10;5)×I
1 0.479 0.692 0.567 0.692 4×I 4 0.686 0.712 0.605 0.712 (20;10;5)×I

5 2 0.479 0.692 0.567 0.692 4×I 5 0.699 0.707 0.6 0.707 (15;9;4)×I
3 0.566 0.7 0.584 0.7 (15;9;4)×I 6 0.73 0.736 0.656 0.736 (20;10;5)×I
1 0.479 0.692 0.567 0.692 4×I 4 0.572 0.704 0.591 0.704 (20;10;5)×I

7 2 0.479 0.692 0.567 0.692 4×I 5 0.739 0.757 0.677 0.757 (20;10;5)×I
3 0.567 0.699 0.582 0.699 (15;9)×I

9 1 0.479 0.692 0.567 0.692 4×I 3 0.479 0.692 0.567 0.692 4×I
2 0.479 0.692 0.567 0.692 4×I

11 1 0.479 0.692 0.567 0.692 4×I 3 0.573 0.693 0.568 0.693 (20;10;5)×I
2 0.479 0.692 0.567 0.692 4×I

Anuran 1 0.684 0.65 0.542 0.65 (15;9)×I 5 0.896 0.904 0.898 0.904 20×I
2 0.758 0.817 0.777 0.817 (6;3)×I 6 0.893 0.895 0.883 0.895 (15;9;4)×I

3 3 0.828 0.842 0.814 0.842 (20;10)×I 7 0.906 0.914 0.908 0.914 12×I
4 0.867 0.871 0.855 0.871 (15;9;4)×I 8 0.897 0.902 0.891 0.902 (12;6)×I
1 0.677 0.687 0.614 0.687 (20;10)×I 4 0.847 0.861 0.847 0.861 (20;10;5)×I

5 2 0.703 0.752 0.704 0.752 (20;10;5)×I 5 0.868 0.875 0.864 0.875 (20;10;5)×I
3 0.798 0.823 0.787 0.823 (12;6)×I

7 1 0.68 0.619 0.479 0.619 (20;10;5)×I 3 0.755 0.79 0.747 0.79 20×I
2 0.755 0.792 0.749 0.792 (20;10;5)×I

9 1 0.377 0.614 0.467 0.614 4×I 3 0.725 0.742 0.687 0.742 (20;10)×I
2 0.742 0.771 0.725 0.771 (20;10;5)×I

11 1 0.377 0.614 0.467 0.614 4×I 2 0.742 0.764 0.715 0.764 (8;4;2)×I

Table 2. Results of prec., rec., F-m, acc, for LSTM; config denotes neurons in the hidden layers.

Data No. k Performance metrics config k Performance metrics configset tables prec. rec. F-m acc. prec. rec. F-m acc.
Satellite 3 4 0.813 0.811 0.794 0.811 (20;10)×I 9 0.807 0.798 0.773 0.798 20×I

5 1 0.545 0.541 0.467 0.541 20×I 5 0.818 0.82 0.799 0.82 20×I
7 1 0.548 0.55 0.48 0.55 (20;10)×I 4 0.721 0.796 0.75 0.796 (20;10)×I
9 1 0.434 0.546 0.47 0.546 20×I 3 0.713 0.762 0.718 0.762 20×I
11 1 0.426 0.49 0.416 0.49 9×I 3 0.729 0.784 0.737 0.784 20×I

Crowd 3 2 0.656 0.72 0.624 0.72 (10;5)×I 7 0.712 0.775 0.715 0.775 4×I
sourced 5 0.669 0.768 0.684 0.768 4×I 10 0.836 0.831 0.795 0.831 20×I

5 3 0.595 0.705 0.593 0.705 (10;5)×I 6 0.632 0.748 0.659 0.748 4×I
7 2 0.479 0.692 0.567 0.692 4×I 5 0.634 0.736 0.652 0.736 (8;4)×I
9 1 0.479 0.692 0.567 0.692 4×I 3 0.519 0.695 0.573 0.695 (4;2)×I
11 1 0.479 0.692 0.567 0.692 4×I 3 0.515 0.693 0.568 0.693 (5;3)×I

Anuran 3 1 0.708 0.696 0.619 0.696 (18;4)×I 5 0.833 0.839 0.815 0.839 9×I
7 1 0.511 0.659 0.557 0.659 (12;6)×I 3 0.757 0.813 0.776 0.813 (12;6)×I
9 1 0.525 0.636 0.513 0.636 (15;9)×I 3 0.744 0.807 0.767 0.807 (4;2)×I
11 1 0.479 0.692 0.567 0.692 (10;5)×I 2 0.515 0.693 0.568 0.693 (12;6)×I

Table 3. Results of prec., rec., F-m, acc, for GRU; config denotes neurons in the hidden layers.

Data No. k Performance metrics config k Performance metrics configset tables prec. rec. F-m acc. prec. rec. F-m acc.
Satellite 3 5 0.757 0.787 0.757 0.787 20×I 10 0.86 0.855 0.843 0.855 20×I

5 3 0.806 0.803 0.785 0.803 20×I 7 0.842 0.837 0.82 0.837 20×I
7 2 0.683 0.723 0.676 0.723 (20;10)×I 5 0.82 0.806 0.778 0.806 20×I
9 1 0.572 0.559 0.486 0.559 (15;9)×I 3 0.754 0.776 0.731 0.776 20×I
11 1 0.427 0.486 0.413 0.486 20×I 3 0.731 0.79 0.741 0.79 (20;10)×I

Crowd 3 3 0.604 0.741 0.645 0.741 (10;5)×I 8 0.819 0.817 0.781 0.817 20×I
sourced 4 0.732 0.783 0.709 0.783 6×I 9 0.817 0.817 0.777 0.817 20×I

5 2 0.511 0.702 0.589 0.702 (8;4)×I 5 0.727 0.774 0.703 0.774 4×I
7 2 0.479 0.692 0.567 0.692 4×I 5 0.741 0.766 0.685 0.766 (10;5)×I
9 1 0.479 0.692 0.567 0.692 4×I 3 0.525 0.706 0.593 0.706 (8;4)×I
11 1 0.479 0.692 0.567 0.692 4×I 3 0.523 0.694 0.57 0.694 (10;5)×I

Anuran 3 3 0.853 0.857 0.841 0.857 9×I 7 0.884 0.884 0.876 0.884 12×I
5 2 0.685 0.745 0.69 0.745 (5;3)×I 5 0.855 0.846 0.838 0.846 (15;9)×I
7 2 0.764 0.83 0.791 0.83 (10;5)×I
9 1 0.666 0.695 0.633 0.695 (15;9)×I 3 0.762 0.825 0.786 0.825 (12;6) ×I
11 1 0.677 0.692 0.599 0.692 (10;10)×I 3 0.771 0.826 0.794 0.826 (20;10)×I

performance in some configurations. GRU also performed strongly, whereas LSTM generally
trailed slightly in both accuracy and computational efficiency. RBF networks showed solid
results, especially at higher dimensionalities. Statistical analysis were conducted using the F-
measure to compare five neural network types across 77 conditions (dataset, dispersion version,
and k values). Due to the non-normal distribution of ratio-scaled data, the Friedman test was
applied, revealing a significant difference among the models (χ2(4, 76) = 42.70, p = 0.00001)
with MLP, SIMPLE, and GRU ranking highest as shown in Figure 2 The dimensionality pa-
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Table 4. Results of prec., rec., F-m, acc, for SIMPLE; config denotes neurons in the hidden layers.

Data No. k Performance metrics config k Performance metrics configset tables prec. rec. F-m acc. prec. rec. F-m acc.
Satellite 3 3 0.836 0.829 0.812 0.829 (20;10)×I 8 0.868 0.866 0.857 0.866 (20;10)×I

5 1 0.511 0.542 0.467 0.542 20×I 5 0.861 0.861 0.855 0.861 20×I
7 2 0.71 0.768 0.719 0.768 20×I 5 0.86 0.851 0.837 0.851 20×I
9 1 0.428 0.523 0.457 0.523 (12;6)×I 3 0.806 0.797 0.757 0.797 (20;10)×I

11 1 0.329 0.498 0.395 0.498 (10;5)×I 3 0.833 0.824 0.789 0.824 (20;10)×I
Crowd 3 2 0.479 0.692 0.567 0.692 4×I 7 0.816 0.806 0.76 0.806 12×I
sourced 3 0.712 0.743 0.652 0.743 12×I 8 0.826 0.836 0.797 0.836 (6;3)×I

5 3 0.519 0.693 0.568 0.693 12×I 6 0.765 0.778 0.724 0.778 (20;10)×I
7 2 0.479 0.692 0.567 0.692 4×I 5 0.761 0.771 0.709 0.771 20×I
9 1 0.479 0.692 0.567 0.692 4×I 3 0.479 0.692 0.567 0.692 4×I

11 1 0.479 0.692 0.567 0.692 4×I 3 0.565 0.697 0.577 0.697 (15;9)×I
Anuran 3 3 0.828 0.833 0.823 0.833 12×I 7 0.905 0.911 0.906 0.911 4×I

5 2 0.699 0.734 0.68 0.734 (12;6)×I 5 0.881 0.884 0.879 0.884 (8;4)×I
7 1 0.377 0.614 0.467 0.614 4×I 3 0.764 0.816 0.776 0.816 12×I
9 1 0.377 0.614 0.467 0.614 4×I 3 0.84 0.814 0.776 0.814 20 ×I

11 1 0.679 0.617 0.474 0.617 (15;9)×I 3 0.768 0.817 0.778 0.817 12×I

Table 5. Results of prec., rec., F-m, acc, for RBF; config denotes neurons in the hidden layers.

Data No. k Performance metrics config k Performance metrics configset tables prec. rec. F-m acc. prec. rec. F-m acc.
Satellite 3 5 0.858 0.853 0.844 0.853 20×I 10 0.853 0.84 0.828 0.84 6×I

5 2 0.701 0.731 0.681 0.731 20×I 6 0.871 0.864 0.853 0.864 20×I
7 1 0.529 0.503 0.425 0.503 20×I 4 0.856 0.838 0.812 0.838 20×I
9 1 0.564 0.562 0.499 0.562 20×I 3 0.837 0.817 0.779 0.817 20×I

11 1 0.315 0.473 0.375 0.473 20×I 3 0.81 0.815 0.776 0.815 20×I
Crowd 3 4 0.805 0.786 0.728 0.786 20×I 9 0.778 0.778 0.716 0.778 6×I
sourced 5 0.772 0.783 0.724 0.783 20×I 10 0.785 0.793 0.74 0.793 6×I

5 3 0.642 0.693 0.568 0.693 12×I 6 0.75 0.758 0.69 0.758 20×I
7 2 0.479 0.692 0.567 0.692 4×I 5 0.782 0.761 0.689 0.761 20×I
9 1 0.479 0.692 0.567 0.692 4×I 3 0.479 0.692 0.567 0.692 4×I

11 1 0.479 0.692 0.567 0.692 4×I 3 0.711 0.695 0.571 0.695 20×I
Anuran 3 1 0.377 0.614 0.467 0.614 4×I 5 0.849 0.85 0.824 0.85 9×I

5 2 0.644 0.696 0.642 0.696 20×I 5 0.781 0.787 0.749 0.787 12×I
7 2 0.747 0.8 0.758 0.8 20×I
9 2 0.756 0.802 0.76 0.802 20×I

11 1 0.661 0.621 0.483 0.621 20×I 3 0.764 0.809 0.769 0.809 20×I

Fig. 2. Comparison of F-measure obtained for all analyzed types of neural network.

rameter k significantly affects model performance. Lower values (e.g., k = 1, 2) yield poor
results, while performance improves consistently with higher k. This confirms that a higher-
dimensional representation captures more discriminative features. To validate this, we applied
the Kruskal-Wallis test to F-measure results grouped by k. Group sizes varied from 70 obser-
vations for k ∈ {1, 2, 3} to 10 for k = 9 and 10. The test confirmed a significant effect of k
on performance (H(5) = 45.33, p < 0.00001). As shown in Figure 3, higher k values corre-
spond to increased median F-measure, indicating that richer, higher-dimensional representations
enable better model performance.

Fig. 3. Comparison of F-measure obtained for all different k values and MLP network.
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Data dispersion – the number of local tables was also examined, with results showing the
framework’s robustness to varying levels of information separation. Performance remained sta-
ble across low and high dispersion settings, underscoring its suitability for distributed environ-
ments. Comparative analysis with recent methods [17], [24] showed comparable performance.
Unlike approaches such as FedFA, which require alignment through shared features or super-
vised anchors [24], or federated PCA/SVD methods that transmit transformation subspaces [8],
our framework avoids global parameter or feature sharing, enhancing privacy and supporting
full heterogeneity.

5. Conclusion
This paper introduced a novel framework for decentralized neural network modeling across het-
erogeneous data sources, addressing disparities in object sets and feature spaces without sharing
raw data. By mapping local datasets into equal-dimensional spaces via PCA, SVD, and UMAP,
and aggregating independently trained models through soft voting (simple average), the ap-
proach maintains both structural and privacy constraints. Experiments on three UCI datasets
validate the framework’s effectiveness, with strong classification results from MLP, SIMPLE,
and GRU models at higher dimensionalities.
However, the results are influenced by specific dataset characteristics, model architectures, and
transformation choices, which may limit generalizability. Potential limitations include infor-
mation loss from dimensionality reduction and computational overhead from parallel training.
Future work will explore alternative transformation methods, unified table representations, and
stacking-based global model integration.
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