33RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2025 BELGRADE, SERBIA)

Formal Modelling of Information System Evolution using B

Pascal André ’
LS2N - Nantes Université - Ecole Centrale Nantes - CNRS
Nantes, France pascal.andre @[s2n.fr

Henri Habrias
LS2N - Nantes Université - Ecole Centrale Nantes - CNRS
Nantes, France henri.habrias @univ-nantes.fr

Abstract

In this paper, we explore the problem of predictable evolution of Information System (IS). In this
context, a part of the Information System evolution is modelled through phases and interphases
in order to specify evolution rules. A formal model is provided using the B language to check
the rule effectiveness.

Keywords: 1S Modelling, Predictable System Evolution, Phases, Formal Methods, B

1. Introduction

Software evolution usually focuses on the maintenance (improvement) of a software system
along its lifecycle. Usually, it is perceived a continuous change from a lesser, simpler, or worse
state to a higher or better state [7]. When you consider the client point of view, only stable
changes (or states) are visible: there are the delivered software releases. Thus the evolution
becomes time-discrete and can be represented by a state machine (or any equivalent dynamic
model), where the states (steps) of the software lifecycle are different (sometimes concurrent)
releases of the "same" system and the fransitions between states are software developments and
installations. Since cycles are merely unwhished, software evolution is rather a sequence of
evolving states rather than a real (lifecycle) graph (even a tree). The transitions are not predicted
tasks but rather depend on first system verification and validation (tests, current usage, bugs)
and, second the requirements evolution (adding new functions, modifying existing parts...). The
evolution management is to control these transitions to keep the system consistent.

In this paper, we work on a restricted frame : software systems are information systems (IS),
whom evolution is already known. Each step (state) of the evolution is called a phase. In each
phase, the system behaves in a specific way, which can be different from another phase. The
transition from one phase to another is a phase called interphase whom rules are temporary. The
evolution can be cyclic since periods, e.g. like the four seasons in agriculture, can be a reason
for evolving software. We call this general frame the predictable evolution of information
systems. This is a different view of the IS evolution paradigm mentioned in [1], which targets
non cyclic IS, as well as evolution oriented approaches such as [14], [9].

There are many and many formalisms, methods and tools for modelling information sys-
tems. Some are semi-formal (UML, E-R,...) other are formal (algebraic, state-based), some
define several aspects or views (static, dynamic, functional). Here, we choose a formal state-
based approach, the B notation, where a system is specified by a (mathematical) state and oper-
ations on that state. The formal (mathematical and logical) notation allow formal checking and
proof of properties. B also benefits from automated toolkits for writing, proving and refining
specifications. More specifically, we use a standard B language [2], [10] instead of the more
recent Event-B [4] because we do not discover events during the refinement. Shortly, a standard
B machine models a system through an invariant property and presents a set of operations that
query or modify this state. Each operation is to be proved against the invariant. The theorem to

ANDRE ET AL. FORMAL MODELLING OF IS EVOLUTION

prove is: the conjunction of the invariant and the precondition implies that the substitution pre-
serves the invariant. It is clear that the proof relates to the invariant, which must fix the system’s
properties, preserved all along the system’s life.

The paper is organized as follows. The general frame on predictable evolution of inform-
ation systems is introduced in section 2. Then we overview several approaches for modelling
such an evolution in section 3. The rest of the paper is devoted to the use of a formal method to
implement phases and interphases. The formal B notation is overviewed in Section Aof the ap-
pendix we made available online'. Formal methods are gainful not only to specify information
systems but also to verify the conformance of the system evolution. The matter is illustrated in
Section 4 on a simple example of university scholarship management.

2. Modelling System Evolution

In this section, we show that phases are necessary to model evolving aspects of the system. We
also explore the relation between phases: the system transitions.

2.1. Information System Modelling

We assume to be at a modelling level and not at an implementation level. Reasoning on models
before implementing them has been proved useful for a long time. The recent trends in software
engineering enforce this idea, since they provide central role to models in business system de-
velopment. This is the credo of the OMG, promoting the Model Driven Approach [13], [11].
Moreover, formal models are necessary to get any confidence in the model semantics, to prove
properties and to automate model transformation. This explains the use of a formal notation, the
B language, in our work.

Three-dimension Models A system model is a combination of three aspects: static, functional
and dynamic. The static part (static model in UML [8]) describes the invariant properties of the
system. In a model-based approach, the static model specifies the system structure by a set of
typed variables (types can be classes in object-oriented approaches as in UML) and constraints
on these variables. The functional part describes the system computations. In a model based
approach, it describes changes on the variables of the system structure through operations. The
dynamic part describes how the system evolves. In UML, the dynamic behaviour is defined in
each (dynamic) class, as a statechart, thus the dynamic behaviour of the whole system is never
specified explicitly. In other languages, like the standard B, the dynamic behaviour is assumed
to be sequential application of operations, conditioned by their precondition.

What happens in practice? Since many years, the static model is the main model for system
modelling, even for UML models. The functional part, we mean more than the operation pro-
files, is often delayed to implementation ; except for formal methods which provide an abstract
semantics (axioms, pre/post conditions...). In any cases, defining a system dynamics is merely
neglected in most modelling languages: it is either implicit (sequential) or distributed (local
behaviour of processes or actors).

Toward a macro dynamic modelling The "great" static model states, at a macro-level, what is
invariant along the whole system lifecycle. The current dynamic models, when exist, describe
micro-evolution (e.g. object evolution). There is then some target mismatch in modelling: we
need both finer invariants (for example, something which must be true for a period of time) and
coarser dynamic changes (for example, the change of a composite part which is not only the
union of the changes of its components).

Let us take the example of a commercial activity. During the sales season, the commercial

'https://uncloud.univ-nantes.fr/index.php/s/S4ZXm9mQONBZMg6k

https://uncloud.univ-nantes.fr/index.php/s/S4ZXm9mQNBZMg6k

ISD2025 BELGRADE, SERBIA

rules change: the prices are lower (10, 30, 50 percent), the customer cannot get back the sold
articles, there is no discount, etc. During the inventory, a part of (or all) the stock is unavailable
for selling. In clothing trade, they are seasonable collections. All these examples illustrate
various periods for the commercial activity.

In order to handle these situations, especially when the target system is some complex pro-
cess, we propose to model macro-evolutions by phases and interphases.

2.2. Phases and Related Paradigms

In front of a complex system, the specifier tries to decompose it into smaller parts: the subsys-
tems. The system is then a composition of the subsystems, the composition rules define the
relation between the subsystems and the system (collaboration, delegation, control...). This is a
(well-known?) horizontal composition. The system is the union of the subsystems.

We also need a vertical relation between subsystems to handle the fact that the system scope
may vary along the time. We mean that only a part of the system has some meaning at a given
time. This part is called a phase. A phase, in its own, is defined as a static model. In other
words, one phase is the static model of its system at a given time. Thus the static model of a
system (modelled through phases) is the slicing of its phases.

Be careful, phases
do not confuse views
or aspects which are
overlapping horizontal
slices, while phases
are vertical slices (Fig-
ure 1). Phases are
close to states in a

constraints

transphases

aseydiayu) / s1u!euuoo\

Temporal
statechart, when con- g phase axis
sidering one object S | constraints
as a system (UML), Qg Operations / Interphases”
or dynamic inter- phase 1

= Operations /
face. More generally, constraints | o phase
phases denote suc- o Operations
cessive appearances Operations/lnterphasy/
of the system, similar Transphases

Operations /

to the lunar phases or phase

physically distinctive
forms of a substance,
such as the solid, Fig. 1. Phases and Interphase along the Temporal Axis

liquid, and gaseous

states of ordinary matter?. In Biology, a phase? is a characteristic form, appearance, or stage of
development that occurs in a cycle.

Relations between Phases There are several sorts of relation between phases : a temporal re-
lation (a phase precedes another phase), a composition relation (a phase includes -maybe with
modalities- another phase), a taxonomic relation (a phase is a "subtype" of another phase). The
temporal relation is to be the interphase concept (see section 2.3). The structural relation will be
based on B machine structural relations. The taxonomy (or classification) is reduced to a simple
inclusion: the transphase is the intersection of the phases, that is the smallest invariant of the
system static model (Figure 1); it is implemented by a B machine inclusion.

“http://en.wikipedia.org/wiki/Phase
3http://dictionary.reference.com

ANDRE ET AL. FORMAL MODELLING OF IS EVOLUTION

2.3. Phases and Interphases

What can happen between two successive phases? Usually, in database systems, the transform-
ation between two stable states of the system is called a transaction. A transaction takes a
database that conforms to the static model of the system, and provides an updated database that
still conforms to the (same) static model of the system. Both database states conform to the
SAME invariant. This is not exactly what we want, since the invariant may differ in the two
phases.

Again, from Biology, one can find that an interphase is the stage of a cell between two
successive mitotic or meiotic divisions (the phases). At first sight, this definition is clearly what
we need. When we study it more precisely, an "Interphase is a phase of the cell cycle, defined
only by the absence of cell division. Cells during interphase may or may not be growing./[...]"*
In this definition, an interphase is a phase, and the problem remains: what can happen between
two successive phases or interphases?

Let us adopt the following meaning. In its general semantics an interphase occurs between
two successive phases. An interphase can be implemented as an atomic transformation (a trans-
ition in the state machines) or a phase (when it is somewhat complex). In this last case, a new
concept is to be introduced to permit phase transfer. In any cases, an interphase should be a
short period of time.

Figure 1 illustrates the phasing of an information system. The sytem model evolves along a
temporal axis (dynamics). The evolution includes a (static) invariant part and a (functional) op-
eration part. The interphase semantics is quite loose, allowing static and functional descriptions.
The piece of model, which is common to all phases, is called the transphase. Carefully note,
that the same phase may occur several times (cycles are allowed), as illustrated in Figure 2.

v
@ID [55 e

Interphase1-2

N

Phase 2 @ \4@ @
|
Interphase2-3\JF

v v 4 v
Phase 3 @ @ @)
@rphase@
4 4 4
Phase 4 @ @ @

Fig. 2. Evolution of Phase Variables

Figure 2 shows the evolution of the system variables when phases change: (i) some variables
exist in one phase only (v0, v6), (ii) some variable appear from a phase (v 5), (iii) some variable
disappear after a phase (v1). We assume that variables always have the same type and meaning,
but the constraints may vary. Interphases and phases can : (i) appear in circles: phase 3 go back
to phase 1, (ii) be alternatives: phase 3 to 1 OR phase 3 to 4.

*http://en.wikipedia.org/wiki/Interphase

ISD2025 BELGRADE, SERBIA

In summary, it is a kind of state-transition system. We assume a "continuity" constraint:
if a variable is needed later, it must be stored in the intermediate phases with a constant phase
dynamic constraint (section 2.4). For example, interphase Inl-3 is not allowed and the v1
variable should be represented in phase 2.

2.4. More on Phases and Interphases

Phases are stable states of the system lifecycle, each defined by a particular invariant. In a
phasing system, one may want to specify interphase policies or phase dynamic constraints.

Interphase Policies The transition can be revolutionary (delete all, create new), conser-
vative (keep all what preserve the "new" invariant) or interactive (ask the user for the conflicting
elements). Interphases can have parameters.

Phase Dynamic Constraints Sometimes, we want to prevent any modification on a vari-
able or to set some relation between the value of the variables at the "beginning" of the phase
and the value at the end, or between phases.

3. Implementing Phase and Interphase

In this section we overview various implementations of phases and interphases. It is illustrated
with the B notation’.

3.1. Implementing a System Model

A system model is specified by a B ma- condition can be stronger than the invariant.
chine. Its general syntax is the following
(only a part of B clauses is shown). The MACHINE

VARIABLES and VARIABLES clauses de- Name

scribe the static part. The OPERATIONS ViRIABLES
clause describes the functional part. The man- INVARIANT
datory INITIALISATION clause enforces x € Type

the existence of at least one "correct” state for INITTALISATION
the machine (a model). X = expr

Remember that in a B machine, each op- OPERATIONS
eration (querying or updating the state) is to Opl(pp,ss) =

be proved to preserve the invariant (property). PRE "

This implies that if a property cannot be ex- THI;\? tcate
pressed in the invariant, no proof will ensure substitution
the preservation of the property. This is some- END

times forgotten in practice. Nevertheless a pre- END

3.2. Implementing the Phases

Phases are a sort of dynamic (or evolving) interfaces. There are numerous ways to implement
dynamic interfaces: aspect programming, state machines, multiple inheritance (polymorphism),
guarded preconditions... An important constraint is: the system is the same for all phases. In
an object model, it means that the system identity never changes whatever phase it is in. Aspect
programming and multiple inheritance are quite different since in our model there is one aspect
only at a given moment. By guarded preconditions, we mean that the specifier determines the

SThe operator syntax is provided in Section Aof the web appendix’.

ANDRE ET AL. FORMAL MODELLING OF IS EVOLUTION

precondition of operations by a predicate on some variables of the system state. It does not
map to our context since we require clearly identified steps: the phases. Last, state machines
can be taken as a starting point, because phase and state are similar concepts, but transition and
interphase can be quite different. In the following, we borrow the state machine analogy for
implementing phases and interphases.

A phase is identified by a name (or a number to simplify the phase ordering and compar-
ison). A phase characterised by variables, an invariant property, and operations (just like a B
machine). The implementation is done along two main axis: static/dynamic separation, cent-
ralized/distributed control. Like the state machines, the phases can be implemented within the
system model or apart. The state machine can be implemented within one centralized machine
or distributed over several machines, as illustrated by Table 1.

Table 1. State distribution

B machines Centralised Distributed
integrated 1 machine 1 for the system +
dynamics only 1 per phase
separate 1 for the system + | 1 for the system +
dynamics 1 for all phases 1 per phase

In order to improve the specification readability, evolutivity and maintainability we rather
choose the separate and distributed version. So we need at least one B machine for the system
model and one for the phasing system (separate), one for each phase (distributed). For sake of
simplicity, the common part shared by each phase i.e., the transphase, is stored as the system
model. We currently do not take into account the phases constraints of section 2.4.

3.3. Implementing the Interphases

Interphases can be transitions (atomic transformations) or phases (durable transformations). If
an interphase is a phase, then it must define a specific invariant according to the interphase policy
(section 2.4). Defining the invariant between two stable states of the system (the phases) is quite
difficult, because the rules are fuzzy. For example, what is the price of an article between the
normal sell and the low cost sell? Does it depend on the vendor?

We choose an intermediate way that preserves the definition of stable states for the system
(Figure 3). A phase is divided in three subphases: the phase preparation (init), the phase progress
(run) and the phase termination (close). Each subphases must conform to the phase invariant.
An interphase is then an atomic transition from a phase termination to a phase preparation. The
atomicity is ensured by the fact that an interphase is implemented as an operation. By default,
the variables appearing in phase n are equal to those of phase n—1.

In B, the precondition of an operation ensures that the (system) state after the operation
preserves the system invariant whenever the (system) state before the operation conforms to the
system invariant. Usually in a B specification the invariant before and the invariant after are the
same. In our implementation, an interphase is a special operation whose precondition applies to
the source phase invariant and whose postcondition (i.e. the state after substitution) applies to
the target phase invariant.

4. Application

In this section, we illustrate our approach on a well-known case study; the annual academic
schedule at university. After a short presentation of the case study in section 4.1, we specify the
system in B in section 4.2 and reason about it in section 4.3.

ISD2025 BELGRADE, SERBIA

w ® @ O ©

Phase n-1 @
close n-1 /
interphase operation + equality

v v Y
Phase n | @ @ @

© ® © ©®

close n

Fig. 3. Splitting phases into subphases

4.1. The Case Study

In our (strongly simplified) school, we distinguish two phases in the university year. In the first
one, we use the file of the students of the preceding year and the file of the open courses of
the preceding year. New students can register and new courses can be added and old courses
suppressed. Students register to no more than one open course. At phase 2, we keep only the
students registered to a course and the courses having at least a student registered in this course
and, of course, we keep which student is registered to what course. During this phase, students
can succeed. In this case, we register who succeed to what course. A student cannot succeed to
a course where he is not registered in. At the end of phase 2, we update the history file of the
results. We do not keep then the registration to courses. But we keep the students of the year
and the courses of the year. We use these files at the beginning of the new academic year.

4.2. A Specification of the Case Study in B

According to the principles edicted at the end of section 3.2, the specification is made of two
parts: the system model (including the transphase) and the phasing model (including a machine
for all phases). Figure 4 highlights the structure of the B specification.

The SEES clause allows read access to the variables of the seen machine ; the sets and con-
stants are visible. The INCLUDES clause allows an write access to the variables of the included
machine ; the sets and constants are visible. The INCLUDES clause is transitive. The EXTENDS
clause is an INCLUDES clause where the operations of the included machine are promoted as
operations of the extending machine.

In the following, the variables have short names to gain some place in the paper.

a) The Core System Model

The system model includes the context ma- MACHINE
chine and the transphase machine. Context

The Context machine declares the common SETS
given sets (types). STUDENT; COURSE

END

ANDRE ET AL.

FORMAL MODELLING OF IS EVOLUTION

!

System
model //
Transphase / Phase(np))
/ Phasing
P INCLUDES model
-]
!
| SEEs
T [
SEES /
!
* / INCLUDES INCLUDES
] <
/
Context / Phase1 Phase2
/
!
!
/
!
!
!
/
!
e
/I EXTENDS EXTENDS
!
!
/
,’ System
i System
model

Fig. 4. Structure of the B Specification

The Transphase machine declares the shared variables and operations: this is the common

system model.

MACHINE
Transphase
SEES
Context
VARIABLES
c_open_courses /* the current courses */
, c_courses_reg [* the current registrations */
, c_year [* the students of the current year */
,results [* the past results */
INVARIANT
c_open_courses C COURSE
A c_year C STUDENT
A c_courses_reg € c_year <+ c_open_courses
A results € STUDENT < COURSE
INITTALISATION
c_open_courses, c_year := (), ()
| c—courses_reg, results := 0,

OPERATIONS
student_creation =

/* register a new student at university */
PRE

STUDENT — (dom(results) U c_yearU

dom(c_courses_reg)) # ()

/* there exists a new student */
THEN

ANY st WHERE

st € STUDENT — (c_year U dom(results))

THEN

c_year := c_year U st
END;
student_removal(st)

skip /* not specified yet */
course_creation =

skip /* not specified yet */
course_suppress(co) =

skip /* not specified yet */
END

~

Such a transphase means that we can always add new students and courses during the uni-
versity schedule. If not, these variables have to be stored in the specific phases. Some operations
are not specified here.

b) The Phasing Model

The phasing model installs the general framework schema: phases, subphases. It is then spe-
cified for each phase.

ISD2025 BELGRADE, SERBIA

The Abstract Phase Model This machine specifies the general phasing mechanism for our case
study.

MACHINE VARIABLES
Phase(np) c_phase /* the current phase number */
CONSTRAINTS , subphase /* the current subphase number */
np : NAT Anp > 1 /*1 :1nit, 2 : run, 3 : close */
SEES INVARIANT
Context c_phase € 0..np
INCLUDES A subphase € 1..3
Transphase INITTALISATION
CONSTANTS c_phase := 0 /* the initial phase number */
al_interph || subphase := 3 /* the initial subphase number */
PROPERTIES OPERATIONS

n_phase < what_is_the_phase =
n_phase := c_phase
END

al_interph € 0..np < 1..np
A al_interph = {(0 — 1), (1 — 2), (2 — 1)}
/* allowed interphases: O to 1 = first year */
/* 1 to 2 = end of registration */
/* 2 to 1 = start a new year */

The np parameter is a constant, which value is given for the actualised machine. In our
example, the correct actualisation is Phase (2), meaning that there are two phases. The
al_interph constant stores which interphases are allowed. It is a relation because various
interphase can occur. The PROPERTIES clause is a predicate on the constants. In our example,
it is a simple yearly cycle: 0 to 1, 1 to 2, 2 to 2. The subphase variable highlights the in-
ternal structure of a phase, the invariant means that each phase has exactly three subphases. The
INITIALISATION clause® means that a phase, with number 0 and subphase 1, asserts a correct
phase. In B, it does not exactly means the value by default or at the beginning, but it is often
interpreted as so by the readers.

The Phase 1 Model This machine specifies the behavior during registration. In phase 1, one can
add new (or remove) students or courses, register a student for a course or cancel a registration.

MACHINE
Phasel
INCLUDES
Phase(2) /* instanciated abstract machine */
PROMOTES
student_creation
VARIABLES
res /* the results at the beginning of phase 1 */
INVARIANT
res € STUDENT <> COURSE A c_phase = 1
A (subphase > 1 = results = res)
/* the results are constants in phase 1 */
INITTIALISATION
/* the INITIALISATION of Phase(2) applies */
c_phase := 1 || res := ()

OPERATIONS
init_phasel =
PRE
c_phase = 1 /* allowed for phase 1 */
A subphase = 1
THEN
c_phase := 1 || subphase := 2
| c—courses_reg := 0 /* no registered students */
/* current course and students remain */
|| res := results /* current results are stored */
END
registration(st, co)
/* registers the student st to the course co */
PRE
c_phase = 1 /* allowed for phase 1 */

o~

/* an arbitrary specific INITTALISATION is given A st € c_year /* st is a current student */

for phase 1 to facilitate the proof obligation */

®INITIALIZATION in the B Book [2].

A co € c_open_courses [* co is an open course */

ANDRE ET AL.

FORMAL MODELLING OF IS EVOLUTION

THEN
c_courses_reg := c_courses_reg U {st — co}
/* a new registration */
END
cancel_registration(st, co) =
skip /* not specified yet */
course_suppress(co) =
skip /* not specified yet */
student_suppress(st) =
/* delete the st student */
PRE
c_phase = 1 /* allowed for phase 1 */
A st € c_year [* st is a registered student */
A st ¢ dom(c_courses_reg)

THEN

IF c_courses_reg & (c_year - c_open_courses)
THEN
/* some registration are lost arbitrarily */
ANY ccr WHERE /* a correct registration */
cer € c_year - c_open_courses
A dom(ccr) = dom(c_courses_reg)
A ccr C c_courses_reg
THEN
c_courses_reg := ccr
END
END
|| c—year := dom(c_courses_reg)
/* current students are registered */

THEN | c_open_courses := ran(c_courses_reg)
student_removal /* from transphase */ /* current courses are registered */

END || subphase := 3

close_phasel = END

PRE END

c_phase = 1 N\ subphase = 2
/* allowed for phase 1 */

The operation student_creation comes from the Transphase included machine. The PRO-
MOTES clause means that student_creation is now an operation of the Phasel machine. The
included INITIALISATION clause is composed sequentially with the Phasel clause INITIALISA-
TION clause. The students can register for any course, but at the end of phasel each student is
registered once at most (to be correct in phase 2): the closure operation transforms a relation to a
function whom registered students have one course only. The current students and open courses
are those registered only.

All the operations are authorized for phase 1 only. This predicate is required in the precon-
dition when the global system includes all phase definitions.

In this phase, we have an example of dynamic constraint (section 2.4): the result variable is
constant during this phase. This is represented by a new variable res set at the beginning of the
phase and an invariant on that variable, which asserts that result = res for all the phase (this is
the goal of an invariant!).

The Phase 2 Model This machine specifies the behavior during the regular period. The current
students and courses do not evolve (dynamic constraint), but students can change their registra-
tion (take another current course). Success to examinations are "private" variables of phase 2.
At the end, the current successes are stored in the result variable to prepare the next year.

The specification is given in Section B of the web appendix'. All the operations are author-
ized for phase 2 only.

¢) The System Model

The system model is the union of the concrete phase machines and implements and the in-
terphases. The phases machines are included in the system machine and all their operations
are promoted as system operations: this is the definition of the EXTENDS clause. The resulting
machine is obtained by putting together the following clauses of Transphase, Phase, Phasel,
Phase2, System: concatenation of SET clauses, concatenation of CONSTANTS clauses, conjunc-
tion of PROPERTIES clauses, concatenation of VARIABLES clauses, conjunction of INVARIANT
clauses, multiple composition of INITIALISATION ([2], p. 313).

ISD2025 BELGRADE, SERBIA

MACHINE PRE

System subphase = 3/* in closure of the previous phase™*/
EXTENDS THEN

Phasel; Phase2 ANY toPhase WHERE
INITIALISATION (c_phase — toPhase) € al_interph

c_phase, subphase := 0,3 THEN
OPERATIONS c_phase, subphase = toPhase, 1
interphase = END;

/* implements a non-deterministic phase END

transition function */ END

In this example, we implement a simple non-deterministic transition relation. We can be
more specific in defining an operation for each interphase that calls the close and init operations
of the phases, or provides some specific parameters.

4.3. Verification

Using a free B Toolkit [3], we write the specifications in an ASCII format. A syntactic con-
trol is provided and proof obligations are checked. The proof obligations deal mainly with
invariant, initialisation and operations. Some specification add-ons improve the effective proof
of the above proof obligations. Other individual theorems can be proved. We replayed with
AtelierB [12], an up-to-date supporting tools. We had to modify the specification to conform
to recent B rules. Details are in Section C of the web appendix'. The machine correctness
establishes the feasibility of the phasing system by enabling cyclic "stable" invariants.

5. Conclusion

In this paper, we showed how multiple invariants are necessary for a predictable evolution of
an Information System. Several invariants is a powerful means to control precisely the system
properties at different steps of its evolution lifecycle. Since the functions of the system (our
operations) are valid against the invariant, a general and global invariant is usually quite empty
or very complicated (many conditions in the predicates).

We proposed a conceptual model based on phases and interphases. We implemented these
concepts using a formal method, the B notation. The use of B was motivated by the need to
specify formally the invariants and operations in order to prove their validity. This was done on
a simple case study using a free B prover. Refinement and implementation of the machines have
not been specified yet. The resulting specification is quite readable, even for those unfamiliar
with formal notations. The framework can be reused for other case studies.

Nevertheless, this work has to be extended. For example, it might be interesting to provide
an interphasing where some variables are "lost" in intermediate phase, for example by providing
temporal constraints on the variables. Here is a classification of such properties ([5], p. 77). (i) a
reachability property states that some particular situation can be reached. (ii) a safety property
expresses that, under certain conditions, something never occurs. (iii) a liveness property ex-
presses that, under certain conditions, something will eventually occur. (iv) a fairness property
expresses that, under certain conditions, something will (or will not) occur infinitely often.

We experiment various implementations for a phasing system (transitions arrays, a single
phasing machine...). Having a hierarchical structure improves readability, reusability and main-
tainability but also proof obligations. To be more general, we shall present the refinement pro-
cess of the B machines but also general frame like those of the "design patterns"[6]. However, a
true application on information systems, should handle database implementation in addition to
programs. A track is to study the feasibility of SQL triggers to handle the phasing concepts.

ANDRE ET AL. FORMAL MODELLING OF IS EVOLUTION

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Aboulsamh, M.A., Davies, J.: A formal modeling approach to information systems evol-
ution and data migration. In: International Workshop on Business Process Modeling, De-
velopment and Support. pp. 383-397. Springer (2011)

Abrial, J.R.: The B-Book Assigning Programs to Meanings. Cambridge University Press
(1996), iSBN 0-521-49619-5

Abrial, J.R., Cansell, D.: Click’n prove: Interactive proofs within set theory. In: Basin,
D.A., Wolff, B. (eds.) TPHOLSs. Lecture Notes in Computer Science, vol. 2758, pp. 1-24.
Springer (2003), also available at http://www.loria.fr/~ cansell/cnp.html

Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press (2010)

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.,
McKenzie, P.: Systems and Software Verification. Springer (2001), iSBN 3-540-41523-8

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for Finite-state
Verification. In: 2nd Workshop on Formal Methods in Software Practice (March 1998)

Group, G.T.R.E.: Glossary of reengineering terms (2022), https://sites.cc.
gatech.edu/reverse/glossary.html [Accessed: (12/04/2025)]

Group, O.M.: Unified Modeling Language Specification, version 1.5. Tech. rep., Object
Management Group, http://www.omg.org/cgi-bin/doc?formal/03-03-01 (Jun 2003)

Gustas, R.: Modeling approach for integration and evolution of information system con-
ceptualizations. In: Frameworks for Developing Efficient Information Systems: Models,
Theory, and Practice, pp. 146-175. 1GI Global (2013)

Habrias, H.: Spécification formelle avec B. Hermes Lavoisier (2001), iSBN 2-7462-0302-
2

Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Prac-
tice and Promise. Object Technology Series, Addison-Wesley, 1 edn. (2003), iSBN 0-321-
19442-X

Lecomte, T.: Atelier b. Formal Methods Applied to Complex Systems: Implementation of
the B Method pp. 35-46 (2014)

Miller, J., (Eds), J.M.: Model Driven Approach, MDA Guide Version 1.0.1. Tech. rep.,
Object Management Group, http://www.omg.org/docs/omg/03-06-01.pdf (Jun 2003)

Molnér, B., Benczir, A., Béleczki, A.: Formal approach to modeling of modern informa-
tion systems. International Journal of Information Systems and Project Management 4(4),
pp- 69-89 (2016)

https://sites.cc.gatech.edu/reverse/glossary.html
https://sites.cc.gatech.edu/reverse/glossary.html

