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Poznań, Poland tomasz.pilka@amu.edu.pl

Tomasz Górecki
Adam Mickiewicz University
Faculty of Mathematics and Computer Science
Poznań, Poland tomasz.gorecki@amu.edu.pl

Abstract

This research compares gradient boosting methods and neural network architectures for predict-
ing football action sequences. Using detailed event annotations and spatial-temporal positional
data, we evaluate the models’ ability to forecast goal-scoring opportunities several actions in
advance. Through feature engineering and ensemble strategies, our results reveal key contex-
tual and spatial factors that influence goal probabilities. Ensemble models combining CatBoost,
LightGBM, and XGBoost outperform individual models, achieving an F1 Score of 0.707 and
PR AUC of 0.734. These findings can provide valuable insights for real-time match analysis
and player evaluation.

Keywords: Football Analytics, Action Sequence Prediction, Gradient Boosting, Neural Net-
works, Spatial-Temporal Analysis, Ensemble Methods.

1. Introduction
The analysis and prediction of team behavior in football have gained substantial importance
due to recent advancements in data collection and machine learning techniques. Accurate fore-
casting of future team actions offers significant strategic value: it supports coaches in decision-
making, enhances tactical planning, and provides insights that can directly influence match out-
comes. The emergence of detailed event-based and positional datasets, such as those offered by
StatsBomb (including their 360-degree spatial tracking data), has enabled a more comprehen-
sive understanding of in-game tactical elements [9]. This work leverages these rich data sources
to predict a team’s upcoming actions by modeling sequential dependencies in match events.
Specifically, we aim to forecast the subsequent nine team actions based on contextual informa-
tion from the four preceding events. Our objective is to assess how such predictive models can
aid teams in managing tactics proactively, improving in-game decision-making, and anticipating
opponents’ strategies.

We investigate state-of-the-art sequential modeling techniques to achieve this, focusing on
Long Short-Term Memory (LSTM) networks and Transformer-based architectures. Further-
more, we evaluate the impact of combining event-level annotations with spatial-temporal in-
sights derived from StatsBomb 360 data. Particular attention is paid to real-world challenges,
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such as missing or incomplete data, and how to mitigate their impact in practical prediction
scenarios.

2. Literature Review
Predicting football actions using data-driven approaches has garnered increasing attention over
the last decade. Initial studies employed probabilistic models, such as Markov chains and Hid-
den Markov Models (HMMs), to predict the following action in a sequence based on historical
patterns [13]. However, these methods often fell short when dealing with the dynamic and non-
linear nature of football gameplay. The introduction of deep learning significantly improved
the predictive performance of sequential models. Recurrent Neural Networks (RNNs) and their
gated variants, LSTM [8] and GRU [5], have proven effective in capturing short- and medium-
term temporal dependencies in football sequences. More recently, Transformer models [16]
have emerged as a powerful alternative, utilizing self-attention mechanisms to capture long-
range dependencies without the limitations of recurrence. Several studies have successfully
applied LSTM and GRU architectures to model team tactics and player decision-making over
time [2], [11]. Transformers further enhanced these capabilities by better modeling context over
longer sequences, leading to improvements in accuracy and interpretability [16], [18]. Recent
works also emphasize the importance of integrating spatial context into sequential prediction.
Combining event data with positional tracking, as available through StatsBomb 3601 datasets,
leads to more accurate representations of game state and significantly improves predictive ac-
curacy [6], [17]. Despite these advancements, few studies have explicitly compared multiple
modeling approaches, particularly ensemble techniques, within a unified framework. Addi-
tionally, limited work exists that thoroughly integrates detailed spatial-temporal context with
advanced feature engineering to maximize predictive accuracy. Furthermore, the literature has
often overlooked the explainability and interpretability of predictive models, which is crucial
for practical adoption by coaches and analysts in professional football.

In summary, existing literature highlights two key factors for effective football action pre-
diction: advanced sequence modeling architectures and the integration of rich spatial-temporal
context. However, challenges remain, particularly in handling incomplete, sparse, and noisy
data, which is typical in real-world sports analytics.

3. Data Description and Preprocessing

This study utilizes two complementary datasets from Hudl StatsBomb2, enabling a comprehen-
sive analysis of both on-the-ball and off-the-ball actions in professional football matches. The
first dataset contains event-level data, which includes detailed annotations of every on-the-ball
action during a game. These annotations capture essential information, including the timing,
outcome, and spatial location of each action. A summary of the attributes available in the event-
level dataset is presented in Table 1. These features serve as the primary input for sequential
models that predict the following team actions.

The second dataset consists of 360-degree camera frames, which capture full-pitch snap-
shots of player positioning during selected events. This data enriches the spatial context by
providing the absolute locations of all visible players on the pitch at specific moments. Table 2
summarizes the features extracted from the 360-degree frames. These contextual features are
especially valuable for modeling off-the-ball behavior and defensive pressure, which are not
directly observable from event data alone.

The full dataset was compiled in collaboration with the Polish football club KKS Lech

1https://statsbomb.com/what-we-do/soccer-data/360-2/, Accessed: 26-March-2025.
2https://statsbomb.com/, Accessed: 26-March-2025.

https://statsbomb.com/what-we-do/soccer-data/360-2/
https://statsbomb.com/
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Table 1. Overview of event attributes.

Attribute Description

Timestamp Time of the event in match clock (minutes and seconds from kick-off)
Player and team ids Unique IDs linking the action to specific players and teams
Event type Type of action (e.g., pass, shot, dribble, duel)
Event outcome Result of the event (e.g., success, failure, turnover)
Player position (x, y) coordinates of the player at the time of the event
Ball position (x, y) coordinates of the ball at the time of the event
Body part Body part used for the action (e.g., left foot, right foot, head)

Table 2. Overview of attributes in the 360-degree tracking dataset.

Attribute Description

Player positions Absolute (x, y) coord. of all players visible in the frame
Timestamp and event linkage Temp. alignment of the frame with the corresp. event
Distance to nearest defender Euclidean distance to the closest opposing player
Number of defenders on goal side Count of opp. positioned between the actor and the goal
Visible opponents Number of visible opposing players within the frame
Visible teammates Number of visible teammates within the frame

Poznań and encompasses all 306 matches of the 2023/2024 Polish Ekstraklasa season. The
dataset comprises a total of 574,251 event records. Initially, models predicting goal-scoring
within the subsequent n ∈ {3, 5, 7, 9} actions were tested to assess whether extending the action
sequence window would still yield robust model performance. Ultimately, after consulting with
the coaching staff, who emphasized the importance of capturing extended tactical sequences,
a prediction window of nine subsequent actions was selected. It is important to note that not
all event records are paired with corresponding 360-degree frames due to the selective nature of
spatial tracking. Consequently, positional context is available only for a subset of actions, which
introduces challenges related to missing data addressed in later sections of this work.

3.1. Data Cleaning

Due to the selective availability of 360-degree frames, many features exhibit structural miss-
ingness - i.e., attributes defined only for specific event types (e.g., shot_statsbomb_xg
applies only to shots). To manage this, columns with over 90% missing values were removed
unless deemed contextually important. The remaining missing data were handled using zero
imputation and accompanying binary indicators, allowing models to distinguish between true
zeros and absent data. This method preserves semantic meaning, supports interpretability, and
is compatible with both tree-based and neural models that require complete inputs.

3.2. Categorical Feature Handling

Gradient boosting models natively support categorical variables without preprocessing. For
neural networks, we applied one-hot encoding, which—despite increasing dimensionality—is
straightforward and effective for low- to medium-cardinality features. While embeddings can
be advantageous for high-cardinality data, one-hot encoding proved empirically sufficient for
our setup, simplifying the modeling pipeline.
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3.3. Feature Engineering

An extensive feature engineering process was applied to fully leverage the dataset’s potential,
thereby enhancing the contextual understanding of each game situation. Several categories of
characteristics were created, including the game context (e.g., current score, who is winning),
the temporal context (e.g., time remaining in half), and indicators of the dynamic state. The
most notable engineered features include:

• Goal Prediction Targets. Binary indicators signal whether the player’s team scores or
concedes a goal within the next 3, 5, 7, or 9 actions. These serve as forward-looking
targets for sequence-based prediction.

• Distance to Goal. A numerical feature measuring the Euclidean distance from the event’s
starting location to the opponent’s goal. It provides a spatial proxy for scoring likelihood.

• Team Momentum. Features tracking goals scored and conceded in the last 10 minutes,
reflecting match dynamics and form.

• Danger Zone Indicator. A binary flag indicating if the event occurred in the central final
quarter of the pitch, a high-risk area tied to goal probability.

• Possession Change. An indicator signaling whether the possession changed compared to
the previous event – useful for modeling transitions and counterattacks.

• Progressive Actions. Features measuring ball advancement toward the opponent’s goal
and classifying it as progressive based on zone-specific thresholds.

• Attacking Pressure. A numeric feature counting the number of attacking third actions
made by the same team in the next 60 seconds, capturing sustained offensive sequences.

• Action Frequency. Counts of total and attacking actions by the team in the last 60 sec-
onds, measuring recent activity intensity and buildup play.

• Critical Time Context. Indicators for whether an event occurs in the final 5 minutes of
the half, when tactical behaviors and scoring likelihood often shift significantly.

• Team Performance Context. Real-time scoreline tracking, including goals for and against,
goal difference, and flags for winning, losing, or tied status.

Together, these features provide a rich temporal, spatial, and tactical context, enabling predictive
models to capture the complexities of football match dynamics better.

3.4. Context Expansion and Feature Selection

To provide the model with richer temporal context, we extended the dataset by including fea-
tures from the previous n ∈ {1, 2, 3, 4, 5} events for each action. After empirical evidence,
thereby optimizing model performance and reducing the past three events, which consistently
yielded the best performance across our models. This approach allowed us to capture the im-
mediate game flow and tactical buildup without introducing excessive noise or dimensionality.
As a result of these transformations, the feature space expanded significantly. We applied a fea-
ture selection pipeline to retain only the 30 most informative features, thereby optimizing model
performance and reducing overfitting. The selection process uses the Random Forest feature
importance, which captures model-driven relevance and statistical dependency with the target.
Random Forest importance reflects how useful a feature is in a non-linear decision-making pro-
cess [3]. Figure 1 illustrates the ranked importance scores for the top selected features, highlight-
ing their contribution to the model’s predictive power. By eliminating redundancy, we create a
compact, diverse, and informative set of features tailored for robust model training.
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3.5. Feature Scaling

Although gradient boosting algorithms are inherently robust to feature scaling, neural networks
are susceptible to the magnitude of input values. To ensure stable and efficient training, all
numerical features were normalized using Min-Max scaling to the range of [0, 1]. This nor-
malization is critical for several reasons. First, it helps prevent the dominance of features with
more extensive numeric ranges, allowing the network to treat all inputs more equally. Second,
it accelerates convergence during training by maintaining gradient stability, particularly when
using activation functions such as ReLU or sigmoid. Lastly, it reduces the risk of exploding
or vanishing gradients, common issues in deep networks when inputs vary widely in scale. By
applying Min-Max scaling, we ensure that the neural network receives well-conditioned inputs,
improving learning dynamics and overall model performance.

3.6. Final Dataset

The final dataset comprises 30 selected features using the feature selection pipeline described in
earlier sections. These features represent a mix of spatial, temporal, tactical, and contextual in-
formation, carefully curated to maximize predictive performance while minimizing redundancy.
The dataset contains 574,251 rows, each corresponding to a single in-game event. It was split
into three subsets using Python’s scikit-learn’s [15] train_test_split() function
with the following proportions:

• Training set (70%): 401,975 rows,

• Validation set (10%): 57,425 rows,

• Test set (20%): 114,851 rows.

The training set exhibits a significant class imbalance, with the target distribution as follows:

• Negative class (no goal in next nine events): 619,859 instances (99.23%).

• Positive class (goal in next nine events): 4,835 instances (0.77%).

This results in a class imbalance ratio of approximately 128:1, posing a considerable challenge
for standard classification models. The target variable used is team_scores_in_next_9_events,
a binary indicator that denotes whether the player’s team scored a goal within the following nine
actions following the current event. This forward-looking label trains models to predict rare but
critical goal-scoring opportunities. We also experimented with multiple values for the prediction
window size (i.e., the number of future events considered), such as n = 3, 5, and 7. Models
trained with smaller windows performed slightly better in precision and F1 score, as shorter-
term dependencies are more straightforward to model. However, after more profound analysis,
we observed that football events can occur rapidly, and valuable actions like build-ups and coun-
terattacks often unfold over longer sequences. We used a larger window of 9 events to better
capture these dynamics, even at the cost of marginally reduced model performance. This trade-
off enables the model to identify more nuanced tactical patterns that span longer play sequences,
thereby aligning it more closely with the real-world context of football.

4. Predictive Models

4.1. Gradient Boosting Methods

In this research, we utilized three popular gradient boosting models: XGBoost [4], CatBoost
[7], and LightGBM [10], due to their robust performance on tabular data, native handling of
categorical variables, and configurable class weighting for imbalanced classification. Hyper-
parameter optimization was performed using the Optuna framework [1], running 100 trials for
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Fig. 1. Feature importance scores derived from the trained Random Forest model.

each model. Key search dimensions included learning rate (0.01–0.3, log-uniform), tree depth
(ranging from 2 to 12), number of estimators (50–500), subsampling and column sampling ra-
tios (0.5–1.0), regularization terms (reg_alpha, reg_lambda, and CatBoost’s l2_leaf_reg), and
additional model-specific parameters such as grow_policy (CatBoost), boosting_type (Light-
GBM), and gamma (XGBoost). Early stopping on validation splits was applied during tuning to
prevent overfitting. Final models were trained on the full training set, and probability thresholds
were optimized to maximize the F1 score. Evaluation metrics—including accuracy, precision,
recall, F1, ROC AUC, and PR AUC—demonstrated the models’ effectiveness in capturing rare
goal-scoring events, validating their suitability for high-dimensional, imbalanced sports data.

4.2. Neural Network Architecture and Optimization Strategy

For the neural network-based approach, we implemented two architectures: a fully connected
Multi-Layer Perceptron (MLP) and a convolutional neural network (CNN) adapted for tabular
data. The MLP, implemented in PyTorch [14], consisted of three hidden layers with 512, 256,
and 128 units, respectively, each followed by ReLU activations and dropout layers with a rate
of 0.4 for regularization. The final layer consisted of a single neuron with a sigmoid activation
function to output the probability of a goal-related event. This architecture totaled approxi-
mately 180,000 trainable parameters. The CNN model comprised three convolutional blocks
with 1D convolutional layers having 64, 128, and 256 filter,s respectively. Each block was fol-
lowed by ReLU activation, batch normalization, max pooling, and dropout layers to enhance
regularization. The resulting features were flattened and passed through two dense layers with
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128 and 64 units, each with batch normalization and dropout, before reaching the final sigmoid-
activated output layer. To address class imbalance inherent in football event data, both models
used a focal loss function [12], which adjusts the loss contribution of each example based on
prediction confidence. The loss is defined as:

FL(pt) = −α(1− pt)
γ log(pt) (1)

where pt is the predicted probability for the true class. The focusing parameter γ and
the scaling factor α were optimized via log-uniform search over the ranges [0.01, 1.0] and
[0.01, 10.0], respectively. Model training used 5-fold stratified cross-validation with early stop-
ping based on PR AUC. Hyperparameters, including learning rate, batch size, dropout rates,
and focal loss parameters, were optimized using the Optuna framework across 100 trials. Final
models were retrained on the full training set using the average number of epochs from early
stopping and evaluated on a held-out test set using F1 Score and PR AUC. Combined with focal
loss and robust tuning, these architectures offer a flexible and effective solution for predicting
rare events in football.

4.3. Model Ensembling Strategy

To enhance performance and robustness, we applied ensemble strategies combining CatBoost,
LightGBM, and XGBoost—a practical approach for rare-event prediction. Three methods were
tested: (1) a simple average of predicted probabilities, (2) a maximum probability selection to
boost recall, and (3) a weighted average (40% CatBoost, 30% LightGBM, 30% XGBoost) to
balance diversity and performance. Each ensemble was evaluated on a held-out test set using
metrics like F1 score, PR AUC, and recall. Thresholds were optimized via the precision-recall
curve. The Simple Average ensemble achieved the best F1 and PR AUC, while the Maximum
Probability variant offered the highest recall. The weighted ensemble also performed competi-
tively, confirming that ensembling improves predictive accuracy in imbalanced football data.

5. Results

5.1. Evaluation Metrics

To evaluate model performance under severe class imbalance, we focused on F1 Score, ROC
AUC, and PR AUC, which better reflect model effectiveness in rare-event settings. F1 Score
balances precision and recall, while PR AUC is particularly suited for imbalanced data as it
emphasizes performance on the minority class. ROC AUC captures the model’s overall dis-
criminative ability. This set of metrics ensures a robust accuracy assessment and the capacity to
detect goal-scoring opportunities.

5.2. Model Evaluation and Comparison

To assess and compare the performance of the trained models, we used several standard clas-
sification metrics: Precision, Recall, F1 Score, ROC AUC, and PR AUC. These metrics are
particularly well-suited for our imbalanced binary classification problem, where the minority
class (goal in the following nine events) is of primary interest. Table 3 summarizes the evalua-
tion results. The best values for each metric are highlighted in bold.

The comparison shows that ensemble methods outperform individual models across most
metrics. The Simple Average Ensemble achieves the best F1 Score and PR AUC, indicating
strong balanced performance in precision and recall for the rare positive class. The Maximum
Probability Ensemble leads in Recall, which may be particularly useful in scenarios where false
negatives are costlier than false positives. Although the CNN model achieves the highest Preci-
sion, it, along with the Dense Neural Network with Focal Loss, suffers from lower recall, which
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Table 3. Comparative analysis of model evaluation metrics

Model Precision Recall F1 Score ROC AUC PR AUC

XGBoost 0.901 0.530 0.667 0.974 0.662
LightGBM 0.811 0.557 0.661 0.977 0.685
CatBoost 0.869 0.587 0.701 0.961 0.707

Neural Network (Dense, Focal Loss) 0.929 0.438 0.595 0.940 0.534
CNN Neural Network 0.971 0.462 0.626 0.937 0.567

Ensemble Gradient (Simple Average) 0.885 0.589 0.707 0.981 0.734
Ensemble Gradient (Triple model weigheted) 0.878 0.591 0.707 0.981 0.734
Ensemble Gradient (Max Probability) 0.832 0.609 0.703 0.980 0.727

limits their overall F1 performance. Nevertheless, they demonstrate the value of deep learning
models in extracting useful representations even in highly imbalanced tabular datasets. Tra-
ditional tree-based models, such as LightGBM and CatBoost, remain competitive and benefit
significantly when combined through ensemble strategies.

6. Discussion and Future Work
Our evaluation revealed that both gradient boosting models (CatBoost, LightGBM, XGBoost)
and neural networks (MLP, CNN) achieved competitive performance in predicting whether a
team will score within the following nine actions. Each model type offered different trade-
offs—some favoring precision, others favoring recall—highlighting the flexibility to tailor pre-
dictive systems to tactical needs. Feature importance analysis provided actionable insights into
which spatial and temporal factors contribute most to goal outcomes, aligning with football in-
tuition (e.g., presence of a danger zone, match timing). The use of focal loss and class weighting
proved effective for handling severe class imbalance. Ensemble strategies, straightforward and
weighted averaging, consistently outperformed individual models by combining their strengths.
While CNNs lack theoretical spatial structure in tabular data, their inclusion helped probe lo-
cal feature combinations heuristically. Compared to established football metrics like VAEP or
xT, which evaluate isolated actions primarily based on field position, our model captures longer
sequences and richer contextual data—including off-ball dynamics—enabling broader player
evaluation across positions. Despite encouraging results, the study is limited to one league (Ek-
straklasa). Future work should generalize the framework to other competitions and seasons. We
also plan to benchmark our approach directly against xT and VAEP, incorporate anomaly detec-
tion for rare-event prediction, and revisit sequential models, such as LSTMs, with more targeted
tuning. Finally, our outputs can be extended into a player evaluation metric that aggregates
predicted goal impact over sequences, supporting fairer scouting across roles.
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