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Abstract

Chatbots powered by large language models (LLMs) are increasingly prevalent in various do-
mains. Nonetheless, they face challenges such as hallucinations and losing context during ex-
tended conversations. This study tackles these issues by proposing a multi-agent strategy for
chat architecture where multiple LLMs focus on distinct tasks to enhance the quality of their out-
put. The suggested solution involves a supervisor agent working in conjunction with a document
search and review module. We assess the performance of information systems with chatbots de-
signed to respond to sustainability questions in English and handle technical documentation for
plant equipment in Polish. A comprehensive analysis of commercial and open-source models
revealed that Qwen2.5 v14b’s performance is comparable to that of the Gemini family models.

Keywords: large language models, chatbots, prompt engineering, hallucination.

1. Introduction
Chatbots utilising large language models (LLMs) augmented by external document retrieval,
known as Retrieval-Augmented Generation (RAG), have significantly transformed how people
and businesses leverage technology across various fields. From education to healthcare, mar-
keting, and industry, chatbots enhance efficiency by providing customised learning support [15]
and assisting healthcare diagnostics and patient management [18].
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In business, chatbots have become essential for automating customer service, analysing
preferences, suggesting products, and guiding purchases, enhancing customer experience and
efficiency [10]. Industrial sectors are increasingly adopting AI-powered chatbots to manage dis-
tributed technical knowledge and documentation, enabling faster decision-making and knowl-
edge sharing [7]. While chatbot applications are extensive, their effectiveness relies on generat-
ing responses solely from the provided documents.

A significant challenge is hallucination, where chatbots generate plausible but unconfirmed
answers, undermining trust and potentially causing serious consequences, especially in medical
applications [12], [18]. Another critical issue is long-context degradation, where models fail
to maintain an accurate reference to the provided documents, resulting in responses that are
disconnected from the relevant content.

The proposed architecture mitigates traditional RAG limitations by distributing tasks such
as query handling, document retrieval, and answer generation among dedicated modules. More-
over, by comparing English and Polish documentation scenarios, we evaluate commercial and
open-source LLMs to determine the most effective models for multilingual technical applica-
tions.

2. Materials & Methods
Developing intelligent, adaptable, and robust RAG systems remains a significant challenge [16].
Our proposition’s primary motivation for using multi-LLM architecture was to overcome the
limitations of early LLMs, particularly their struggles with long-context retention and under-
standing [6]. During our initial testing, we observed that when presented with extensive techni-
cal documentation, LLMs frequently hallucinated, lost track of the prompt, or refused to answer.
To address these challenges, we implemented a modular, multi-agent approach that distributes
key responsibilities across specialised models. The following sections give detailed information
concerning the proposed solution.

2.1. Multi-Agent RAG Approach

A common pitfall in traditional LLM-based RAG systems is task overload — expecting a single
model to handle user interaction, information retrieval, and structured answer generation. In-
spired by human teamwork, we hypothesised that breaking these tasks into distinct roles and as-
signing them to different models would improve overall performance [25]. Our system consists
of three primary modules: supervisor agent (user interaction & question processing), document
search and review module, and answer generation node. Each module is tailored to its specific
function and optimised using dedicated prompts.

2.2. Supervisor Agent: Managing User Interaction and Query Refinement

To ensure seamless user interaction, we implemented a supervisor agent as the first node in
our system. Its core responsibilities include: maintaining conversation context and handling
general queries, determining whether a question requires document-based retrieval, and refining
ambiguous or incomplete user queries before forwarding them.

Inspired by Adaptive RAG [11], the supervisor agent autonomously requests clarification
for ambiguous queries before passing refined questions to the retrieval module.

2.3. Document Search and Review Module

This module aims to retrieve, filter, and structure relevant document fragments to maximise their
utility in answer generation. This process involves several key steps:

Multiple Query Reformulation Users often pose questions imprecisely, assuming the chat-
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bot understands their implicit context. To mitigate this, we employ a smaller LLM to reformulate
the query based on a summarisation of all available documents [26]. This ensures the retrieval
process accounts for domain-specific nuances and missing details.

Vector Search and Fragment Retrieval We use a vector database (ChromaDB [4]) for
semantic search with the documents preprocessed and divided into fixed-size chunks [22]. Our
findings indicate that changing the preprocessing in the technical document case study by using
a parsing approach powered by an LLM [21] is more efficient. Subsequently, the user query
is embedded with the same model applied during preprocessing. At this stage, we retrieve
the top 20 document fragments via hybrid similarity search enhanced with Maximal Marginal
Relevance (MMR) [3], a method that promotes diversity while minimising redundancy among
retrieved results.

Post-Retrieval Filtering and Context Optimisation first removes duplicate or near-duplicate
passages and re-ranks the remaining fragments with a relevance-plus-diversity objective inspired
by MMR and its recent chunk-level variant, Chunk-RAG [24]. Next, we apply a long-context re-
ordering strategy to counter the “lost-in-the-middle” effect documented by [17]. Finally, follow-
ing the hierarchical XML flattening of LongRefiner [13], we serialise the selected fragments into
a lightweight XML-like format (only ‘<document filename="example.pdf">‘ tags). This struc-
ture enhances parsing efficiency and facilitates the answer-generation agent’s ability to trace
provenance.

LLM Contextual Compressor The retrieved context is reviewed and evaluated by an LLM
that rewrites the documents into well-structured source material for the Answer Generation
Node [14]. This approach allows us to feed the LLM responsible for accurately answering
the user’s query with only the relevant information.

2.4. Answer Generation Node

Once the post-filtered context arrives, the final agent selects an answer style—a numbered pro-
cedure for shop-floor staff, a troubleshooting checklist, or a brief compliance summary—and
generates the reply. Prompt quality proved decisive: starting from a minimal template, we it-
eratively edited the text and re-ran all evaluation metrics while keeping the rest of the pipeline
fixed. The final prompt contains four blocks:

1. Role block—frames the model as a domain expert who must rely strictly on the provided
documents.

2. Goal block— states the desired output.

3. Guideline block—lists hard constraints on source-faithfulness, language, style, mark-
down tables, and handling data gaps.

4. Few-shot examples—two Input→Output pairs (long procedural, short informational) that
demonstrate the target structure and tone.

2.5. Testing scenarios

The proposed chatbot architecture was evaluated by solving tasks in two scenarios. The first
scenario utilised a dataset of 30 documents (1,353 chunks) in English, which collected company
data on sustainability procedures and facts. It was also supplied with a set of probable questions
and suggested answers. The chatbot’s goal was to prepare an answer containing all the informa-
tion from this set. When questions reflect those from the Q&A set, it should answer with similar
content.

In the second scenario, a set of technical documentation, including manuals and other neces-
sary information, was considered to enable new employees to operate the equipment efficiently
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in the factory. It contained 101 files (1306 chunks) all in Polish. In this task, a chatbot should
serve as a guide, instructing the worker on what to do in all situations within the plant. The
answers needed to be precise and correct, as any mistake may result in injury or significant busi-
ness losses. The datasets of queries and expected responses were developed collaboratively with
industry technologists and domain specialists, ensuring high practical relevance and challenging
technical specificity. In both cases, the dataset contains 20 examples.

The chatbot was evaluated on two virtual machines. The first, used for testing open-source
models, featured 48 vCPUs, 192 GB of RAM, and four NVIDIA L4 GPUs (totalling 96 GB of
VRAM). The second, used for testing Gemini models, was a smaller 8 vCPU instance with 32
GB of RAM, as inference was handled externally via the API provider.

2.6. Evaluation Methods

The open-source tool DeepEval [27] was employed to evaluate the quality of responses gener-
ated by the LLMs. This modern evaluation environment enables a more precise and context-
sensitive assessment of the LLM output. The applied metrics provide a multidimensional eval-
uation based on factual accuracy, faithfulness to context, contextual relevance, and precision.
DeepEval, which follows the LLM-as-a-Judge paradigm [9], proved to be a reliable and effi-
cient tool for automated evaluation in our experiments. The following metrics were used in the
evaluation [23]:

Metric Score — a general measure of the relevance and quality of the generated answer
in relation to the input query and context. The metric provides both a numerical score and an
explanation of the rating.

Correctness Metric Score — based on the G-Eval approach with a chain-of-thought (CoT)
strategy, this metric assesses the factual correctness of the output. It considers contradictions
with the expected answer, missing key details, and tolerance for generic or subjective language,
as long as factual accuracy is maintained.

Contextual Metric Score — evaluates how effectively the model uses contextual informa-
tion (particularly in RAG systems), focusing on whether the most relevant content was priori-
tised and integrated into the answer.

Faithfulness Metric Score — measures the degree to which the generated response reflects
the source context accurately, aiming to detect hallucinations or misrepresentations.

Contextual Precision Score — similar to the Contextual Metric Score, but emphasising the
precision of selected contextual elements (i.e., key informational nodes).

2.7. Selected Model Description

The chosen Gemini family models represent different developmental versions of the Gemini
API, available through the Google AI Studio platform:

• Gemini-1.5 Pro (gemini-1.5-pro-002) — a stable release with a high input context win-
dow (up to 2,097,152 input tokens and 8192 output tokens).

• Gemini-2.0 Flash-001 — a stable, optimised version with a smaller input limit (1,048,576
input tokens and 8192 output tokens).

• Gemini-2.0 Pro — an experimental version, derived from Gemini 2.0 Pro Experimental,
currently replaced by Gemini 2.5-exp [8].

We evaluated multiple open-source models, notably combining Deepseek-R1-32 with Phi-4
for better coherence [19]. Key model characteristics:

• Deepseek-R1-32 is a reinforcement learning-trained model based on the Qwen-32B ar-
chitecture. It was developed without traditional supervised fine-tuning, relying instead on
large-scale RL-based optimization [1].
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• Phi-4 is a small language model, designed for efficient task-oriented inference. It was
integrated with Deepseek to enhance output consistency and factual correctness [19].

• Qwen2 5_32B is a large language model developed by Alibaba Cloud, supporting up to
128,000 input tokens and generating outputs up to 8,000 tokens. It is part of the Qwen2.5
family and has been optimised for multilingual and multi-domain tasks [5].

• Blossom-v5_14B is a model built on top of Qwen-2, capable of handling context windows
up to 32,768 tokens. It was developed by an independent researcher, Azure99, with a
focus on long-context comprehension and accuracy [2].

• Bielik-11B-v2.3-Instruct is an 11B-parameter language model developed by SpeakLeash
and Cyfronet AGH, optimised for Polish NLP tasks. It merges earlier Bielik versions and
uses instruction tuning. It scored 8.56 on Polish MT-Bench and 65.71 on the Open PL
LLM Leaderboard . [20].

3. Results
A comprehensive evaluation was conducted using an English-language and Polish-language
dataset to demonstrate the effectiveness and versatility of our multi-agent RAG architecture.
Our evaluation aims not merely to compare standalone model performance, but specifically to
assess whether our modular multi-agent architecture improves the performance of open-source
models to match or approach that of commercial counterparts. Below results gathered in each
case study are presented.

3.1. Evaluation of English-Language Document Processing

We started the experiments with comparative tests conducted on a wide range of language mod-
els, including open-source solutions and commercial models provided by Google (Gemini).
This allowed us to see the differences in the performance of various accessible solutions and
determine their applicability to the described tasks. Tests were repeated seven times, reporting
the average results. Tables 1 and 2 contain an average of 20 evaluated questions for the Gemini
and open-source models, respectively.

As the results show, it is difficult to determine the winner, as models resulting well in one
score (e.g., Gemini-1.5-flash-002, Gemma) are outperformed by others when different criteria
are considered (e.g., Gemini-1.5-pro-002, Deepseek-r1-32-phi4). In the case of the Gemini
family, the results are very similar; however, more noticeable differences emerge when open-
source solutions are taken into consideration. Nevertheless, there are open-source solutions
which can easily replace the paid versions. Each group’s three best models (marked in bold)
were selected for in-depth analysis of the results.

Figure 1 presents all evaluation metrics’ mean values and standard deviations for the three
selected models. Based on this, we can see that Gemini-1.5 Pro-002 and Gemini-2.0 Flash-
001 achieved very similar results across most metrics, particularly in overall accuracy (Metric
Score) and Faithfulness Metric Score. Both models demonstrated similar levels of stability, with
relatively low and comparable standard deviations, suggesting consistent performance across

Table 1. Comparison of Gemini models

Model Metric Score Correctness Contextual Faithfulness Precision
Gemini-1.5-flash-002 0.96 0.85 0.62 0.99 0.48
Gemini-1.5-pro-002 0.96 0.85 0.44 0.91 0.88
Gemini-2.0-flash-001 0.96 0.83 0.42 0.94 0.90
Gemini-2.0-pro 0.96 0.83 0.42 0.94 0.90
Gemini-1.5-pro-001 0.92 0.85 0.69 0.98 0.46
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Table 2. Comparison of open-source models

Model Metric Score Correctness Contextual Faithfulness Precision
Gemma 1.00 0.83 0 1.00 0
Nemotron-mini 0.99 0.80 0 0.99 0
Deepseek-r1-32-phi4 0.96 0.82 0.32 0.98 0.90
Jais-adaptive-7b 0.96 0.75 0 1.00 0
Hermes3 0.95 0.88 0 1.00 0
Blossom-v5_14b 0.95 0.77 0.23 0.94 0.90
Qwen2 5_32b 0.95 0.74 0.32 0.92 0.85
Phi4-64k 0.92 0.82 0.36 0.99 0.32
Deepseek-coder-v2-32k 0.82 0.78 0.35 1.00 0.47
Mistral 0.71 0.59 0.65 1.00 0.57
Zephyr 0.69 0.61 0.63 1.00 0.48
Llama3-chatqa-70b 0.66 0.58 0.36 0.94 0.89
Llama-3.2 0.62 0.49 0 1.00 0
Llama3-chatqa-8b 0.58 0.50 0.34 0.98 0.93
Gemma2_27b 0.54 0.48 0.31 0.91 0.92
Llama3 1.8b-64k 0.45 0.33 0.56 1.00 0.53

queries. The Gemini-2.0 Pro, although promising, scored lower across all metrics and exhibited
a noticeably higher variance, indicating less stability and potential issues with reliability in this
version. Detailed analysis of individual test queries (see Figure 2) reveals that neither Gemini-
1.5 Pro nor Gemini-2.0 Flash-001 consistently outperforms the other. Performance varies de-

Fig. 1. Comparison of average metric values for Gemini models with standard deviations

Fig. 2. Metric values per test query for Gemini models
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Fig. 3. Average metric scores for open-source models with standard deviations

Fig. 4. Evaluation metric results per query for open-source models

pending on the query, confirming that both models are generally comparable, with strengths in
different scenarios.

Figure 3 presents a comparison of the average values and standard deviations of all evalua-
tion metrics for the three selected open-source models. All of them demonstrated a comparable
overall performance — the average Metric Score and Correctness Metric Score exceeded 0.90
in all cases. One key difference lies in stability — the combination Deepseek-R1-32 + Phi4
exhibited noticeably higher standard deviations than the other two models, suggesting a greater
variance in performance depending on the query. Despite this, Deepseek + Phi4 sometimes
produced highly accurate and relevant responses, indicating potential that could be unlocked
through further tuning and integration work.

It is important to note that the system architecture and prompts were initially optimised
specifically for Gemini models through iterative refinement, adjusting prompts and evaluating
their impact. Future research should explore creating dedicated configurations tailored explicitly
to individual open-source models. Such tailored optimisations could substantially enhance their
evaluation scores and overall system performance.

The detailed per-query results presented in Figure 4 confirm the following observations: The
Deepseek-R1-32 + Phi4 combination showed substantial variability — it performed very well
for specific queries and considerably worse for others, reflecting inconsistent behaviour under
a unified prompt strategy. In the case of Blossom-v5 and Qwen2.5, their performance appears
comparable. However, the results vary depending on the specific query. Regarding processing
speed, Qwen2.5 stands out as the fastest of the three, which may be a crucial advantage in
latency-sensitive applications.
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Table 3. Average response time for each model

Model Average Time (s) Standard Deviation
Gemini-2.0 Pro 19.81 2.39
Gemini-1.5 Pro 20.68 1.94
Gemini-2.0 Flash 12.93 1.79
Deepseek-R1-32 + Phi4 123.83 23.98
Qwen2.5 71.85 10.383
Blossom-v5 111.94 23.59

Fig. 5. Model comparison by response time, general relevance (Metric Score), and factual correct-
ness (Correctness Score). We can see that the Gemini models give rapid answers, but their
relevance and correctness vary more when compared to the open-source models. Yet, the open-
source model’s performance is slow.

The final analysis included a comparison of all six models — both commercial and open-
source — in terms of key evaluation metrics and average response time. Table 3 summarises
the average time required to generate a response for each model. These results clearly show
that open-source models — particularly Blossom-v5 and Deepseek-R1-32 with Phi4 — have
significantly longer response times than Gemini models. The exception is Qwen2.5, which
achieved times similar to the commercial models, making it the most efficient among the tested
open-source models.

Figure 5 gives more detailed insight into the differences between the compared models,
where the three most variable metrics were considered (Metric Score, Correctness Metric Score
and Response Time) and plotted for each test sample separately. The visualisation reveals that
the top-performing models with balanced response time and high-quality output are: Gemini-
1.5 Pro, Gemini-2.0 Flash, and Qwen2.5. Notably, upon manual inspection of generated an-
swers, Qwen2.5 demonstrates comparable coherence and factual accuracy to the Gemini mod-
els.

Thus, the final choice of model depends on user priorities — if response speed and commer-
cial support are critical, Gemini models may be more attractive. However, for those seeking a
high-performing open-source alternative — Qwen2.5 proves to be a strong and viable option.
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Fig. 6. Overall performance comparison across all evaluated models

3.2. Evaluation of Polish-Language Document Processing

In this case study, the primary objective was to investigate whether our modular RAG system
could enhance the performance of open-source LLMs to levels comparable to Google’s state-
of-the-art Gemini models, particularly given the inherent challenges associated with processing
technical content in Polish. The comparative analysis concentrated on the best models defined
in the previous task and included Bielik v2.3 11B, a model optimised explicitly for Polish-
language content. Gemini models were tested six times, and open-source models three times,
due to computational constraints.

The results of this evaluation are summarised in Figure 6. Notably, our multi-agent RAG ar-
chitecture successfully narrowed the performance gap typically observed between open-source
and commercial models. Gemini 1.5 Pro and Gemini 2.0 Flash achieved superior consistency,
indicated by lower standard deviations, confirming their reliability in technical Polish-language
applications. Notably, the open-source model Deepseek R1 32B achieved accuracy metrics
on par with those of Gemini models, yielding the highest correctness and contextual precision
scores among open-source options. Bielik v2.3, despite its smaller parameter size, showed re-
markable performance considering its targeted linguistic optimisation for Polish. However, it
exhibited significant variability in response time, highlighting potential stability issues.

Our research revealed that optimising prompts and interactions explicitly for the Polish lan-
guage significantly improved the performance of open-source models, as shown in Figure 7.
This linguistic adaptation was particularly beneficial for Bielik, enabling it to effectively lever-
age its strengths in processing Polish-language contexts. Additionally, our multi-step retrieval
and refinement process, combined with specialised multilingual embeddings, substantially mit-
igated the typical weaknesses of generic embedding models in handling Polish text.

Although open-source models exhibited competitive accuracy, they generally required longer
response times due to computational limitations in the testing environment. Figure 8 illustrates
the trade-offs between response speed and output quality. Qwen2.5 stood out by balancing

Fig. 7. Average metric scores for open-source models after Polish-language optimisation
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Fig. 8. Comparison of response time versus answer quality and correctness across models. A few
erratic outliers were excluded for clarity, in the case of the Bielik model, which exhibited un-
usually high response times (>400s) in select instances. This visualisation underscores that the
Gaminis models give rapid answers when compared to open-source data. While the relevance
and correctness are comparable in the evaluated models.

speed and quality effectively, showing promise as a viable alternative to commercial models in
resource-sensitive deployments.

Overall, the Polish-language case study underscores the robustness and adaptability of our
modular RAG architecture. By carefully orchestrating distinct roles among specialised agents,
our approach significantly elevated the performance of open-source LLMs, affirming their po-
tential as cost-effective alternatives to proprietary solutions, especially in multilingual technical
applications.

4. Conclusion
The presented multi-agent RAG system demonstrated significant advancements in addressing
key limitations of traditional single-model chatbot solutions, particularly in managing technical
and multilingual documentation. Through the modular distribution of responsibilities — user
interaction management, context retrieval optimisation, and structured answer generation — our
approach effectively mitigated common issues such as model hallucinations and context loss.

We significantly improved system robustness and answer accuracy by structuring our RAG
pipeline into specialised, interconnected modules. Our evaluations highlight the importance
of structured input processing, query refinement, and context optimisation in enhancing RAG
performance. These findings underscore the importance of task-specific large language model
(LLM) orchestration when designing AI-driven knowledge assistants, particularly in technical
and multilingual domains.

The performance of various LLMs was evaluated in two distinct case studies that considered
English and Polish texts. We compared the commercial (Google Gemini) with open-source
models and concluded that the differences between Gemini family networks are negligible in
the presented task settings. More differences were visible within open-source solutions, whose
performance is usually not as good as that of commercial solutions, except for Qwen2.5 v14b
whose performance is comparable.

Future research could benefit from enhancing model stability, particularly by addressing the
response time variability observed in smaller, specialised models like Bielik. Further optimi-
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sation of multilingual embeddings and exploration of hybrid architectures combining various
open-source models may also provide avenues for continued improvement in RAG system per-
formance and applicability.
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