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Abstract 

This article presents an innovative approach to monitoring river water quality in real time 
by generating estimates of difficult-to-measure signals such as biochemical oxygen 
demand. Laboratory tests take too long for real-time monitoring. Therefore, an adaptive 
PDALM algorithm (Proportional Differential Algorithm with a Latch Mechanism) was 
developed, integrating mathematical modelling with measurement data to enable 
instantaneous estimation of water quality signals using a special latch mechanism. The 
forced eigenvalue distribution guarantees system dynamics and ensures stability and 
robustness to disturbances. In the proposed RTMS system, the PDALM algorithm 
functions as an adaptive soft sensor generating high-quality training data. This data is then 
used by a generative neural network for anomaly detection and forecasting of atypical 
scenarios in dynamic environmental systems. The system can function as an intelligent 
environmental monitoring module capable of learning, predicting, and responding to 
changing environmental conditions. 

Keywords: water quality monitoring, BOD estimation, latch mechanism algorithm, data-
driven generative models, eigenvalue-based tuning. 

 

1. Introduction 

Water quality is critical for environmental health, biodiversity, and public safety. Key indicators, 
such as biochemical oxygen demand (BOD) and dissolved oxygen (DO), are commonly used to 
assess water conditions. However, traditional methods, such as laboratory-based BOD5 analysis, 
require several days, limiting their use in real-time monitoring [1]. This delay hinders timely 
responses to pollution events. To overcome this limitation, researchers have developed 
estimation techniques that rely on mathematical models and artificial intelligence. Ecological 
systems can be described by ordinary differential equations that capture dynamic interactions 
between oxygen levels and organic matter degradation. Efficient signal estimation algorithms are 
therefore required for real-time monitoring, capable of handling disturbances and incomplete 
data. In recent years, artificial intelligence, including generative AI, has opened new possibilities 
for forecasting and anomaly detection in such dynamic systems [2]. 
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1.1 Overview of current solutions in the water quality monitoring process  

Due to the challenges of direct BOD measurement, many approaches rely on indirect 
estimation using soft sensors and surrogate variables (e.g. pH, COD, redox potential) [6], 
[9], [11]. These methods fall into two main categories: model-based and data-driven. 

Model-based approaches use known physicochemical relationships, such as the 
Streeter-Phelps model, to describe oxygen depletion and recovery in rivers. These models 
can be enhanced with tools such as Kalman filters that integrate sensor data with state 
estimators to provide optimal predictions. Extended and unscented Kalman filters, as well 
as particle filters, are often used for non-linear systems [2], [12]. Hybrid observers, such 
as the combination of Elman networks with unscented filters, have shown high accuracy 
in estimating difficult parameters such as BOD and nitrogen [8]. Kalman filters combined 
with LSTM networks and attention mechanisms have also achieved excellent results DO 
estimation (R² ≈ 0.94) [1, 2], [15]. 

Data-driven methods rely on machine learning to infer patterns from data. Artificial 
neural networks (ANN) are widely used to estimate water quality based on accessible 
inputs such as TOC, UV absorbance, nitrate levels and temperature [11], [16]. Models such 
as extreme learning machines (ELMs), echo state networks (ESNs), and stochastic neural 
networks (SNNRW) have been applied to predict BOD, with improvements in both speed 
and accuracy [3, 4], [8]. 

Hybrid solutions, which integrate model- and data-driven approaches, are gaining 
popularity. For example, Kalman-LSTM models benefit from physical interpretability 
while improving learning generalisation [4, 5]. These approaches are often implemented 
on IoT platforms, allowing data collection and estimation in real-time [5, 6]. Such systems 
mark a shift toward proactive water quality management [1], [7], [12]. 

 

1.2 A model of a polluted river described by the Streeter-Phelps equation 

The Streeter-Phelps model describes the dynamics of dissolved oxygen (DO) and 
biochemical oxygen demand (BOD) in rivers [10], [13]. The dynamics of oxygen in a river 
can be characterised by ordinary differential equations that determine the level of oxygen 
and the degradation of organic pollutant as a result of the reaeration and deoxygenation 
processes. By developing a description of these phenomena, we can write the equation in 
the following form: 

 

 
ௗ

ௗ௧
𝐷𝑂 = 𝐾௥(𝐷𝑂௦ − 𝐷𝑂) − 𝐾ௗ𝐵𝑂𝐷 (1) 

 
where: 
𝐷𝑂 - oxygen concentration in water [𝑚𝑔/𝑙], 
𝐷𝑂௦ - oxygen saturation under equilibrium conditions, 
𝐾௥ - reaeration factor (restoration of oxygen in water), 
𝐾ௗ - coefficient of oxygen consumption by organic matter degradation, 
𝐵𝑂𝐷 - biochemical oxygen demand. 
The Streeter-Phelps model describes how, after wastewater (e.g., from a wastewater 

treatment plant) is discharged downstream, DO drops rapidly and reaches a minimum (the 
so-called critical zone - the greatest oxygen deficit) and then gradually recovers through 
reaeration (a self-purification process). 

The eigenvalues of the system of these equations make it possible to determine the 
stability of water quality and predict the critical points at which oxygen deficiency may 
occur. The system of Streeter-Phelps equations, taking into account the influence of 
stochastic disturbances 𝑤ଵ, 𝑤ଶ , can be written in the matrix form: 
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 𝐴ெ = ൤
−𝐾ௗ 0
𝐾ௗ −𝐾௥

൨ (3) 

 
Eigenvalues of the object matrix: 

 
 𝜆ଵ = −𝐾௥, 𝜆ଶ = −𝐾ௗ  (4) 

 
Interpretation of eigenvalues: 
 If 𝜆ଵ, 𝜆ଶ < 0, the system is stable, and the river has the ability to clean itself. 
 If 𝜆ଵ > 0, excessive oxygenation (e.g., eutrophication) may occur. 
 If 𝜆ଶ > 0, it means no decomposition of organic matter and ecosystem degradation. 

The key objective of the research is to monitor water quality in real time and apply 
predictive algorithms to predict changes in its parameters, taking into account the analysis 
of the eigenvalues of the dynamic system. The authors of the article, after reviewing 
modern methods for estimating BOD and DO in real time, proposed the solution of the 
author with special attention to a new algorithm based on the location of eigenvalues. This 
algorithm is a training dataset generator for the RTMS (Real-Time Monitoring System) 
using generative artificial intelligence. The principles of its operation, the quality of the 
generated results, and the potential for integration with generative artificial intelligence 
techniques are discussed. 

 

2 RTMS application of Proportional-Differential Algorithm with a Latch 
Mechanism (PDALM). 

The objective of the study was to develop and test an adaptive real-time system to estimate 
signals in a river model described by nonlinear differential equations. The RTMS is made 
up of three main modules: 
1. Data Acquisition Module (AM): Collects real-time sensor data (DO, flow, 

precipitation, anthropogenic factors). 
2. Training Data Generation Module (PDALM): Processes current signals and enforces 

dynamic constraints using a latch mechanism. 
3. Prediction & Optimisation Module (LSTM): Applies AI to predict oxygen deficits and 

classify degradation states. 
The PDALM algorithm estimates BOD in real time using DO measurements and a 

mathematical model subjected to simulated disturbances. Fig. 1 illustrates the structure of 
RTMS and how PDALM generates learning data for the ANN. 

 

Real
object

Object
model AM

A
object 
disturbances

PDALM algorithm

A ≠ AM

IoT 
(measurements)

Learning ANN 
 70% train data
 20% test data
 10% validation

Trained ANN

SW

measurement 
disturbances

1

2

Training 
Set

(τ - update 
period) 

PDALM

AM

LSTM

 
 

Fig. 1 Schematic of the RTMS system using the PDALM algorithm 
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The PDALM estimator assumes that the real system dynamics differ from the model 
(𝐴 ≠ 𝐴ெ). It generates a time-dependent estimate 𝑥ො௔ൣ஻ை஽

஽ை
൧, updated over interval τ. Once 

trained (SW=1), the ANN switches to prediction mode (SW=2), estimating the final output  
𝑥ොீൣ஻ை஽

஽ை
൧ based on the DO inputs 𝑦[𝐷𝑂]. 

At its core, PDALM adapts filter gains to ensure that the system's eigenvalues remain 
in a predefined stable region (left half-plane), controlled by parameters α (oscillation) and 
η (response rate). When eigenvalues enter this region for the first time, the algorithm 
latches on to the gains and uses them as a reference to reject future destabilising updates. 
Fig. 2 shows the allowed eigenvalue region. 

 

 
Fig. 2 Area with the required location of the monitoring system eigenvalues 

 
Unlike classic filters, PDALM actively shapes the system dynamics by modifying the 

gain values 𝛥𝐾 based on the adaptation error and its derivative. This ensures a fast and 
stable response, even under severe perturbations, without requiring knowledge of noise 
intensity. 

The following is the simplified pseudocode of the algorithm: 
 

1. Initialisation:  
 initial values: state estimate 𝑥ො଴ , gain 𝐾଴ , and auxiliary flags 𝑓𝑖𝑟𝑠𝑡_ℎ𝑖𝑡 =
𝑓𝑎𝑙𝑠𝑒 and parameters 𝛼, 𝜂 
2. // measurement and calculation loop 
for each time step i:   

 measurement 𝑦௜  //defined as 𝑦௜ = 𝐶𝑥௜ + 𝑣௣௜ 
 generation of state estimation 𝑥ො௜ାଵ 
 calculation of adaptation error 𝜀௜ = 𝑦௜ − 𝐶𝑥ො௜ 

 calculation of gain correction 𝛥𝐾௜ = 𝜉௜( 𝑘௣𝜀௜ + 𝑇ௗ

ௗഄ೔

ௗ௧
) taking into account changes 

in the direction of error 𝜉௜ ∈  {1, 0, −1} 
 update reinforcement 𝐾௜ାଵ ← 𝐾௜ + 𝛥𝐾௜ 

3. // eigenvalue analysis (latch mechanism) 
 calculation of 𝜆௜(𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑖𝑚𝑎𝑔. 𝑝𝑎𝑟𝑡𝑠) ←  𝑒𝑖𝑔.  𝑜𝑓 (𝐴 − 𝐾௜ 𝐶) 

o 𝑖𝑓 𝜆௜  ∈  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑎𝑟𝑒𝑎(𝛼, 𝜂) 
 current 𝐾௜ is saved as "good set" and 𝑓𝑖𝑟𝑠𝑡_ℎ𝑖𝑡 = 𝑡𝑟𝑢𝑒 

o 𝑖𝑓 (𝑓𝑖𝑟𝑠𝑡_ℎ𝑖𝑡) 
 𝜆௜ାଵ(𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑖𝑚𝑎𝑔. 𝑝𝑎𝑟𝑡𝑠) ←  𝑒𝑖𝑔. 𝑜𝑓 (𝐴 − 𝐾௜𝐶) 
 𝑖𝑓 (𝜆௜ାଵ  ∉  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑎𝑟𝑒𝑎(𝛼, 𝜂)) 

 restoring previous values 𝐾௜ "good set". 

where: 
𝐴 - coefficient matrix describing dynamics of the river's natural self-purification process; 
𝐶 =  [0, 1] - measurement matrix indicating the measured DO signal; 
𝑘௣ - proportionality vector; 
𝑇ௗ - vector of time constant. 

Once latched, the system tolerates only safe gain adjustments, preserving the desired 
dynamic behaviour. The algorithm is robust, self-stabilising, and adaptive to disturbances 
such as pollution surges or changes in flow. It was validated through simulations using a 
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virtual river system as a reference. Importantly, PDALM does not require knowledge of 
the intensity of any disturbances. The use of a differentiating member allows the algorithm 
to react more quickly to changes in the signal trend, for example, to anticipate a drop in 
oxygen before it fully develops, based on the rate of change of the BOD. As a result, even 
when the system is suddenly perturbed (a spike in pollutant load, a change in lateral inflow 
conditions), the algorithm maintains stability and forced dynamics. 

 

3 Pre-processing of learning data with the PDALM algorithm 

Preprocessing of the learning data for the neural network was carried out with the PDALM 
algorithm using the mathematical model of the object, in particular, taking into account the 
variability of the object's excitations and parameters in the algorithm. Fig. 3 shows selected 
time waveforms of the object and algorithm signals for different values of system and 
measurement disturbances and the distribution of eigenvalues.  

 

 
Fig. 3 Time waveforms of the BOD and DO signals (a), distributions of eigenvalues of the object, and obtained 
by the PDALM algorithm (b) 

 
The waveforms in Fig. 3a confirm the correct approximation of the BOD signals, for 

which real-mode measurement is impossible, and the measured DO signal. Despite the lack 
of access to measurement and process noise models or any information about them, and 
despite sudden changes in the signal, the PDALM algorithm achieved high estimation 
precision (Tab 1). Fig. 3b shows the successive locations of the eigenvalues of the RTMS 
system during the operation of the algorithm. A small number of eigenvalues outside the 
required area occur only during the initial phase of the algorithm's operation. 

The BOD and DO signals generated by the PDALM algorithm were evaluated with the 
quality indicators of the RMSE and MAE monitoring adopted, and the results are 
summarised in Table 1. 

 
Tab. 1 RMSE and MAE quality indicators of the PDALM algorithm with parameter changes 𝑘௣ and 𝑇ௗ 

 RMSE MAE 

PDALM parameters BOD DO BOD DO 

𝑘௣ = [−0.4; 0.06]  𝑇ௗ = [0.055; −0.006] 9.98 1.36 4.26 0.65 

𝑘௣ = [−0.6; 0.09]  𝑇ௗ = [0.065; −0.0085] 9.92 1.33 4.4 0.64 

𝑘௣ = [−0.8; 0.12]  𝑇ௗ = [0.095; −0.01] 9.28 1.22 4.04 0.58 

Parameters: 𝛼 =  22௢, 𝜂 =  1.4, 𝑊 = [3, −2; −2,1], 𝑉 = [0.1] 

 
For BOD, both adopted quality indicators take higher values than for the measured DO 

signal. Adopting larger absolute values of the parameters 𝑘௣ and 𝑇ௗ from among those 
presented in Table 1 results in the best results confirmed by the RMSE and MAE indices. 
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In the simulations, it was noted that the algorithm compensated for changes in noise by 
correcting the gains, maintaining stability, and the required speed of response. Thus, it can 
be concluded that the algorithm with eigenvalue localisation has a certain robustness - it can 
adapt to changing conditions, providing good quality estimation even where the classical 
filter becomes suboptimal. In conclusion, the new PDALM algorithm proved to be effective 
and accurate, especially when monitoring an unmeasured parameter such as BOD. 

 

4 Integration of the PDALM algorithm with generative artificial intelligence 

The increasing availability of generative AI techniques, such as GANs, diffusion models, 
or transformers, opens new opportunities to monitor dynamic systems such as water 
environments [12], [14]. These models can learn the distribution of normal system 
behaviour (e.g., daily DO/BOD patterns) and identify anomalies by comparing real data 
with synthetic references [4]. 

For example, the GAN-based system described in [8] successfully detected pollution 
incidents in water networks by comparing sensor readings with generated baselines, improving 
detection accuracy and minimising false alarms. Similarly, [14] used GANs to model pressure 
profiles and detect leaks in distribution systems with around 70% effectiveness. In water 
quality applications, such generative models can simulate pollution scenarios (e.g., rainfall, 
industrial discharge), which may serve as test cases for adaptive algorithms like PDALM. 
Coupling PDALM with digital twins enhanced by generative AI allows robust, scenario-based 
training even for events not yet observed [15, 16]. In our implementation, an artificial neural 
network (ANN) was trained to detect adverse water quality events using DO and BOD as 
inputs. The network architecture includes the following: 
 An input layer (DO, BOD), 
 A hidden layer with 10 ReLU neurones, 
 A softmax layer for multiclass classification, 
 A binary output (normal vs. anomaly) using a sigmoid function, 
 The Adam optimiser for training. 

The network classifies the data into five classes: normal condition (1), moderate 
pollution (2), discharge of municipal or industrial wastewater (3), intensive inflow of 
pollution (4), and failure of the aeration system (5) (Fig. 4). 

 

 
Fig. 4 Classified pollution anomaly by their areas in RTMS system  

 
A known issue in such classification tasks is data imbalance, and some classes (e.g., 

rare events) are under-represented. Without class weighting, the model tends to favour 
dominant classes. To address this, training was repeated using class weights, which 
improved recognition of less frequent but critical anomalies (Fig. 5). 
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Fig. 5 Confusion matrix for object state recognition by the RTMS system for configurations with class weights 
(a - left) and Precision, Recall and F1-score per Class (b - right) 

 
To evaluate the effectiveness of the anomaly detection module in the RTMS system, a 

neural network classifier was evaluated using standard performance metrics: precision, 
recall and F1-score, calculated for each class. The classification task involved five 
environmental conditions: from normal state to severe pollution or aeration system failure. 
The model was trained with class weights to compensate for the imbalance in the dataset, 
particularly the small number of examples for rare but critical classes. Figure 5a presents 
the confusion matrix, showing that the classifier achieved high accuracy in all classes. 
Notably: 
 Normal conditions (Class 0) were recognised with high precision (1.0) and recall (0.95), 
 Moderate pollution (Class 1) was detected with an F1-score of 0.99, 
 Wastewater discharge (Class 2) achieved perfect classification (F1 = 1.0), 
 Intensive pollutant runoff (Class 3) and aeration failure (Class 4) were also effectively 

identified, with F1-scores of 0.95 and 0.8, respectively. 
The corresponding F1-scores per class are visualized in Fig. 5b. While the rarest class 

(Class 4) showed lower precision (0.67), the model maintained full recall (1.0), indicating 
that critical anomalies were not overlooked even if a small number of false positives 
occurred. The overall weighted F1-score reached 0.98, confirming that the class-weighted 
approach significantly improves model performance in realistic monitoring scenarios. This 
is particularly important for early detection of dangerous or rare environmental events, 
such as infrastructure failures or unreported pollution discharges, where missed detections 
could have serious consequences. 

Beyond classification, generative models can support visual interpretation by 
producing synthetic images or risk maps for decision making [2]. For example, they can 
simulate the effects of industrial discharge on DO/BOD dynamics, aiding scenario 
analysis, and operational planning. The PDALM algorithm, through eigenvalue-driven 
adaptation and stability control, acts as a soft sensor that generates high-fidelity synthetic 
training data (e.g., estimated BOD signal), enabling the learning process even in the 
absence of full measurement coverage. This generative mechanism ensures data diversity, 
supports model generalisation, and mimics real-world signal variability. 

In summary, integrating generative AI with adaptive algorithms like PDALM enables 
the development of intelligent monitoring systems that not only estimate but also simulate, 
predict, and adapt to complex environmental events, thus acting as self-learning, proactive 
surveillance tools. 

 

5 Summary and Conclusions 

This paper presents an innovative approach to real-time water quality monitoring (RTMS) 
that combines mathematical modelling of dynamic systems with the capabilities of 
generative artificial intelligence. Central to the solution is the proprietary PDALM 
algorithm, which enables immediate estimation of hard-to-measure parameters, such as 
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BOD, eliminating the need for time-consuming laboratory analysis. A key feature of 
PDALM is its latch mechanism, which adaptively adjusts estimator parameters while 
ensuring system stability through enforced eigenvalue localisation. This allows the system 
to actively shape its dynamic response and to remain robust under disturbances. 

The integrated RTMS, supported by generative AI, includes modules for prediction, 
anomaly detection, and generation of realistic simulation scenarios. The use of an artificial 
neural network allows classification of environmental conditions, including rare but critical 
events such as industrial discharges or aeration failures. Introducing class weights during 
training significantly improved the recognition of these under-represented cases. 
Simulations demonstrated high estimation accuracy and robustness of the system under 
varying measurement and model conditions. PDALM effectively compensated for 
disturbances by adapting dynamic parameters, making it suitable for real-world scenarios 
with high uncertainty. 

The results confirm that the combination of model-based estimation with adaptive 
generative AI offers a promising path toward intelligent environmental monitoring. This 
hybrid approach improves system accuracy, resilience, and adaptability, laying the 
foundation for self-learning architectures capable of predicting complex, previously 
unobserved phenomena. Future work includes integrating digital twin concepts and 
advanced predictive models, such as diffusion models and temporal transformers, to further 
enhance monitoring and decision support. The convergence of AI and adaptive algorithms 
marks a key direction in environmental technology that enables systems that are not only 
reactive but proactive and robust in the face of real-world variability. Therefore, the 
generative aspect of our system lies in the hybrid synergy between model-based synthetic 
data generation and planned integration of GenAI models, enabling accurate classification 
and proactive, simulation-based reasoning. 

 

References  

1. Bagheri, M., Bagheri, K., Farshforoush, N., Velazquez, A., Liu, Y.: A novel hybrid 
deep learning model for real-time monitoring of water pollution using sensor data. 
Journal of Water Process Engineering. 68 106595 (2024) 

2. Cai, H., Zhang, C., Xu, J., Wang, F., Xiao, L., Huang, S., Zhang, Y.: Water Quality 
Prediction Based on the KF-LSTM Encoder-Decoder Network: A Case Study with 
Missing Data Collection. Water (Basel). 15 (14), 2542 (2023) 

3. Chhipi-Shrestha, G., Mian, H.R., Mohammadiun, S., Rodriguez, M., Hewage, K., 
Sadiq, R.: Digital water: artificial intelligence and soft computing applications for 
drinking water quality assessment. Clean Technol Environ Policy. 25 (5), 1409–1438 
(2023) 

4. El-Shafeiy, E., Alsabaan, M., Ibrahem, M.I., Elwahsh, H.: Real-Time Anomaly 
Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning 
Technique. Sensors. 23 (20), 8613 (2023) 

5. Essamlali, I., Nhaila, H., El Khaili, M.: Advances in machine learning and IoT for 
water quality monitoring: A comprehensive review. Heliyon. 10 (6), e27920 (2024) 

6. Islam, M.B.E., Faheem, Y., Ahmad, A., Fraz, M.M.: From Measured pH to Hidden 
BOD: Quasi Real-Time Estimation of Key Indirect Water Quality Parameters Through 
Direct Sensor Measurements. (2024) 

7. Kwater, T., Hawro, P., Krutys, P., Gołębiowski, M., Drałus, G.: Comprehensive online 
estimation of object signals for a control system with an adaptive approach and 
incomplete measurements. Bulletin of the Polish Academy of Sciences Technical 
Sciences. 150111–150111 (2024) 

8. Li, Z., Liu, H., Zhang, C., Fu, G.: Generative adversarial networks for detecting 
contamination events in water distribution systems using multi-parameter, multi-site 
water quality monitoring. Environmental Science and Ecotechnology. 14 100231 
(2023) 

9. Liu, Y., Yuan, L., Li, D., Li, Y., Huang, D.: Process Monitoring of Quality-Related 
Variables in Wastewater Treatment Using Kalman-Elman Neural Network-Based 



ISD2025BELGRADE, SERBIA 

Soft-Sensor Modeling. Water (Basel). 13 (24), 3659 (2021) 
10. Lung, W.: Progression of river BOD/DO modeling for water quality management. 

Water Environment Research. 95 (4), (2023) 
11. Pattnaik, B.S., Pattanayak, A.S., Udgata, S.K., Panda, A.K.: Machine learning based 

soft sensor model for BOD estimation using intelligence at edge. Complex & 
Intelligent Systems. 7 (2), 961–976 (2021) 

12. Quaghebeur, W., Torfs, E., De Baets, B., Nopens, I.: Hybrid differential equations: 
Integrating mechanistic and data-driven techniques for modelling of water systems. 
Water Res. 213 118166 (2022) 

13. Streeter, H.W., Phelps, E.B.: A Study of the Pollution and Natural Purification of the 
Ohio River. US Public Health Service Bulletin. (No.146), (1925) 

14. Taiwo, R., Yussif, A.-M., Zayed, T.: Making waves: Generative artificial intelligence 
in water distribution networks: Opportunities and challenges. Water Res X. 28 100316 
(2025) 

15. Yu, P., Cao, J., Jegatheesan, V., Du, X.: A Real-time BOD Estimation Method in 
Wastewater Treatment Process Based on an Optimized Extreme Learning Machine. 
Applied Sciences. 9 (3), 523 (2019) 

16. Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., Ye, L.: A review 
of the application of machine learning in water quality evaluation. Eco-Environment & 
Health. 1 (2), 107–116 (2022) 

  


