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University of Rzeszów
Faculty of Exact and Technical Sciences
Rzeszów, Poland jsarzynski@ur.edu.pl

Monika Homa
University of Rzeszów
Faculty of Exact and Technical Sciences
Rzeszów, Poland mhoma@ur.edu.pl

Abstract
In today’s digital landscape, Artificial Intelligence (AI) plays a crucial role in addressing cy-
bersecurity challenges faced by IT companies, as the threat of distributed attacks persists de-
spite implementing Network Intrusion Detection Systems (NIDSs). We propose a novel hy-
brid classifier leveraging distributivity equations to combine k-Nearest Neighbors (kNN), De-
cision Trees (DT), and Stochastic Gradient Descent (SGD). Evaluated on UNSW-NB15 and
SIMARGL2021 datasets, our method demonstrates competitive performance in accuracy, re-
call, precision, F1-score, and area under ROC curve (AUC) compared to base classifiers and
SOTA techniques (Stacking, Soft Voting - Weighted Average Probabilities, Adaptive Boosting
(AdaBoost) and Histogram-based Gradient Boosting Classification Tree (HGBC)). Key inno-
vations include a distributivity-based aggregation framework and class-balancing strategy for
imbalanced datasets.

Keywords: Cyberattack, Intrusion Detection System, Ensemble classifier, Aggregation func-
tion; Distributivity.

1. Introduction
Hybrid classification models in Machine Learning (ML) integrate diverse algorithms to enhance
predictive accuracy, robustness, and adaptability across complex datasets. Using AI, these mod-
els dynamically optimize decision-making and detection capabilities, addressing the limitations
inherent in single-algorithm approaches. Key advantages include improved generalization to
unseen data and flexibility in application domains, although with increased computational cost.
Among hybrid strategies, ensemble methods (e.g., bagging, stacking, voting) are paramount,
combining base classifiers to mitigate individual biases and errors (see, e.g., [11]).
This work introduces the Distributive Aggregations Ensemble (DAE) algorithm, a novel en-
semble framework that employs aggregation operators (e.g. mean functions, triangular norms)
that satisfy the distributivity equation. This mathematical foundation ensures structural effi-
ciency and minimizes computational overhead. The method is tailored for multiclass cyberat-
tack detection, using in this case Decision Trees (DT), k-Nearest Neighbors (kNN), and Stochas-
tic Gradient Descent (SGD) from Scikit-learn https://scikit-learn.org/stable/
as base classifiers.

Key contributions are the following:
Method framework - An ensemble architecture integrating distributive aggregation to optimize
attack classification in imbalanced datasets (UNSW-NB15, SIMARGL2021), requiring at least
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three classes for mathematical coherence.
Selection Strategy - Base classifiers chosen for diversity (kNN: local patterns, DT: rule-based
decisions, SGD: linear efficiency) and complementary strengths in attack recognition.
Class-balancing strategy - A novel resampling technique ensuring proportional representation
of benign and attack instances, enhancing evaluation fidelity.
Benchmark Validation - Comprehensive evaluation on UNSW-NB15 and SIMARGL2021
datasets showing competitive performance versus SOTA methods (0.5-4.8% accuracy gains for
critical attack classes).

The Distributive Aggregations Ensemble method connects a mathematical concept with real-
world cybersecurity, where is a need for efficient and scalable ways to improve intrusion detec-
tion.

The remainder of this paper is structured as follows: Section 2 refers to some related work.
Section 3 formalizes distributivity in aggregation. Section 4 details used datasets. Section 5
explains the implementation strategy and details the experimental setup. Section 6 presents an
evaluation of the proposed method, analyzing classification accuracy, sensitivity, precision, F1
score, and the area under the curve (AUC) for each attack category. Specifically, the performance
of our ensemble method is compared to that of individual base classifiers, soft voting, stacking,
AdaBoost, and HGBC. Finally, Section 7 concludes the paper.

2. Related work
Ensemble classification approaches play a vital role in network intrusion detection, a crucial
aspect of global technology security, as they involve monitoring network traffic to detect poten-
tial security threats, employing techniques like Intrusion Detection Systems (IDS) and Intrusion
Prevention Systems (IPS) (see, e.g., [1], [6], [13]).
Recent advancements include the results of Wang et al. [14] i.e. a multi-domain controller co-
operation defense framework, CC-Guard, against DDoS attacks on SDN controllers. The mech-
anism covers the attack detection trigger module, the switch migration module, the anomaly
detection module, and the mitigation module.
G. Kaur in 2020 in his paper [5] explored and compared the performance of the Weighted
Voting-based AdaBoost ensemble and the Stacking ensemble, incorporating feature selection
techniques. The study aimed to develop ensemble models leveraging the Resilient Distributed
Dataset framework within the MapReduce paradigm for detecting network anomalies. The
effectiveness of these models was assessed using the NSL-KDD and UNSW-NB15 datasets.
Sharma et al. [12] used XGBoost for IoT intrusion detection (96.8% accuracy), while AdaBoost
showed vulnerability to class imbalance (64.8% accuracy on SIMARGL2021).

Limitations in existing approaches include sensitivity to class imbalance, high resource de-
mands, and limited adaptability to novel attack patterns. The proposed DAE method addresses
these through distributivity-guided aggregation and strategic classifier selection.

3. Distributivity of aggregations
Aggregation functions (see [4]) combine classifier outputs into unified decisions. We consider
means (see e.g., [3], p. 55) and triangular norms (t-norms) (see [7], p. 6) as commonly used in
classification tasks (see Table 1).

The distributivity equation enables effective fusion. Formally

Definition 1 (cf. [2], p. 318). A symmetric aggregation function Aggr1 : [0, 1]2 → [0, 1] is
said to be distributive over another aggregation function Aggr2 : [0, 1]2 → [0, 1] if for all
X,Y, Z ∈ [0, 1] the following equation holds

Aggr1(X,Aggr2(Y,Z)) = Aggr2(Aggr1(X,Y ), Aggr2(X,Z)). (1)

However, most of the aggregation functions do not exhibit distributivity with respect to each
other. The lack of this property can introduce difficulties in algebraic transformations and com-
putational modeling, leading to increased complexity and reduced efficiency.
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Table 1. Aggregation functions used in this study.

Mean T-norm

Arithmetic MA:
X + Y

2
Gödel (Minimum) T∧: min(X,Y )

Harmonic MH:

0, X = Y = 0
2XY

X + Y
, elsewhere

Algebraic TA: XY

Power MP:

√
X2 + Y 2

2
Einstein TE:

XY

2− (X + Y −XY )

Hamacher TH:

0, X = Y = 0
XY

X + Y −XY
, elsewhere

Lukasiewicz TL: max(x+ y − 1, 0)

In this study, we focus on specific aggregation function pairs that satisfy the distributivity
law (1), as listed below:
D1 TA(X,T∧(Y, Z)) = T∧(TA(X,Y ), TA(X,Z)) D7 TE(X,T∧(Y, Z)) = T∧(TE(X,Y ), TE(X,Z))

D2 TA(X,T∨(Y, Z)) = T∨(TA(X,Y ), TA(X,Z)) D8 TE(X,T∨(Y, Z)) = T∨(TE(X,Y ), TE(X,Z))

D3 TA(X,MA(Y, Z)) = MA(TA(X,Y ), TA(X,Z)) D9 TH(X,T∧(Y, Z)) = T∧(TH(X,Y ), TH(X,Z))

D4 MA(X,MA(Y, Z)) = MA(MA(X,Y ),MA(X,Z)) D10 TH(X,T∨(Y, Z)) = T∨(TH(X,Y ), TH(X,Z))

D5 TA(X,MH(Y, Z)) = MH(TA(X,Y ), TA(X,Z)) D11 TL(X,T∧(Y, Z)) = T∧(TL(X,Y ), TL(X,Z))

D6 MP (X,MP (Y, Z)) = MP (MP (X,Y ),MP (X,Z)) D12 TL(X,T∨(Y, Z)) = T∨(TL(X,Y ), TL(X,Z))

The methodology originally introduced in [10] has undergone significant refinements to
enhance both classification accuracy and the validity of the approach. A thorough evaluation was
conducted based on multiple performance metrics, including accuracy, sensitivity, precision,
false-positive rate, F1 score, and the area under the ROC curve.

4. Dataset description
The datasets we used in this paper are two different (artificial and real-world) datasets for multi-
class classification problems.
UNSW-NB15 Dataset (University of New South Wales Network-Based 15) [9]: This dataset,
generated at UNSW Canberra, includes nine attack types alongside normal traffic (see Table 2).
It contains 49 labeled features categorized into flow, basic, content, time, general-purpose, and
connection-based attributes.
RoEduNET-SIMARGL2021 Dataset (Romanian Education Network, part of the SIMARGL
2021 project) [8]: Derived from real-world academic network traffic, this dataset was con-
structed by recording normal activity and executing various cyberattacks. It includes 45 (44+ 1
dec) features and represents contemporary threats.
In total, were generated seven different types of attacks in addition to the normal traffic (see
Table 2). This is one of the unique datasets that includes up-to-date attacks.
These above datasets play a crucial role in cybersecurity research and help researchers and prac-
titioners develop and evaluate methods for identifying and mitigating cyber threats and attacks.

Table 2. Datasets classes with their cardinality and sample cardinality.

UNSW-NB15 SIMARGL2021

Class Size Sample Class Size Sample

Normal 2,218,764 105,802 Normal 33,911,170 86,405
Generic 215,481 52,901 SYN Scan 2,496,814 86,405
Exploits 44,525 44,525 DoS R-U-Dead-Yet 2,276,947 86,405
Fuzzers 24,246 24,246 DoS Slowloris 864,054 86,405
DoS 16,353 16,353 UDP Scan 692,195 69,220
Reconnaissance 13,987 13,987 Others 22,631 22,631
Others 6,691 6,691

Total 2,540,047 264,505 Total 40,263,811 437,471
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5. The Agorithm and experimental setting

Data pre-processing
We unified scattered instances from both datasets into consolidated files. Data cleaning in-
cluded:
• Removal of records containing "Infinity" or missing values
• Elimination of attributes with single unique values
• Class balancing through selection of predominant attack categories: UNSW-NB15: 7 classes
(6 attacks + normal) and SIMARGL2021: 6 classes (5 attacks + normal)
Final randomized samples: 264,505 (UNSW-NB15) and 437,471 (SIMARGL2021). Detailed
cardinality and the names of individual attack classes are presented in Table 2.
Let d0 be the decision class "0" (no attack) and d1, d2, ..., dn, where n = {7, 6} denote types
of network attacks, respectively. Moreover, ε ∈ (0, 1) denotes the threshold for classifying
an object into one of the dn classes. This Algorithm 1 effectively utilizes distributivity-based
aggregation to improve classification performance, particularly for network intrusion detection
tasks.

Algorithm 1: Distributive Aggregation Ensemble
Input: Training/test tables Ttr, Tts; parameter ε
Output: Decision values for test objects

Step 1: Selecting classifiers

Select triplet (X,Y, Z) where X = P , Y ∈ Ci, Z ∈ Pi (k-NN, DT, SGD)

Step 2: Stratified cross-validation
Apply stratified cross-validation with k = 5 folds, where each split consists of k − 1 folds for
training and the remaining fold for testing.

Step 3: Labeling training data
For each k-split training set:
• Binary Labeler P : Labels an object as: 0 if it belongs to decision class d0 (“N” - no attack);

1 if it belongs to some attack class ¬d0 = {d1, d2, ..., dn}
• Collection of Binary Labelers Ci (for each i = 1, 2, ..., n): Labels objects belonging to class
di (“Ai”) as 1; Labels all other attack classes ¬di = {d1, d2, ..., dn} \ {di} as 0

• Collection of Binary Labelers Pi (for each i = 1, 2, ..., n): Labels objects in class di (“Ai”)
as 1; Labels objects in class d0 (“N”) as 0.

Step 4: Probability estimation for test data
For each k-split test data: Compute the probability of membership to each decision class labeled
1 (attack class “Ai”) using classifiers X,Y, Z with X = P , Y ∈ Ci, Z ∈ Pi.

Step 5: Constructing weight tables
• For each k-split, create a weight table for P,Ci, Pi with computed probabilities.
• Merge all k-split weight tables into a single P,Ci, Pi weight table.

Step 6: Computing distributivity equations
• For each distributivity equation D1 −D12, compute:
− Left side value (L): L = P
− Calculate D1(P,Ci, Pi), ..., D12(P,Ci, Pi)
− Determine the maximum value: −max(D1(P,Ci, Pi)), ...,max(D12(P,Ci, Pi)).
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Step 7: Decision making

• Fix parameter ε ∈ (0, 1). For each ε and each distributivity equation D1 −D12:
− If max(D(P,Ci, Pi)) > ε, assign decision value i (one type of attack).
− Else, assign a neutral decision (“N” - no attack).

Step 8: Evaluation
• Construct a confusion matrix using predicted decisions from the previous step and actual
decisions.

Classifier configuration
• k-NN: Euclidean distance (k = 5), MinMax scaling
• DT: Gini impurity, random state=1
• SGD: Modified Huber loss, max iter=2000, random state=1, MinMax scaling
• Implementation: Python 3.11, scikit-learn 1.2.2
• Statistical Validation: Wilcoxon signed-rank tests (α = 0.05).

The optimized algorithm leverages distributive aggregation functions (Section 3) within a 5-
fold stratified cross-validation framework to maintain class balance. Experiments on UNSW-
NB15 (38 features) and SIMARGL2021 (35 features) employed comprehensive evaluation met-
rics—accuracy (ACC), sensitivity (TPR), precision (PPV), F1-score, and AUC—to address in-
herent class imbalances.

Our distributivity-based aggregation approach was rigorously compared against base classi-
fiers (kNN, DT, SGD) and SOTA ensemble methods (Stacking, Soft Voting, AdaBoost, HGBC).
Unlike soft voting’s probability averaging, our method algebraically combines classifiers through
distributivity equations. Performance comparisons (the best-selected results) are presented in
Tables 3 - 6. A complete version of the results is available on GitHub:
https://github.com/Ama79/results-ISD2025.

Tabular presentation of results
We experimentally examined our approach by contrasting it with standard classifiers and other
established classification techniques. This contrast encompasses various assessment criteria.
The achieved outcomes relied on a specific threshold, denoted as ε ∈ (0, 1). This notably
broadened the range of results from which we chose the optimal one.

Table 3. Classification accuracy (%) of the proposed DAE method (OUR) compared to base classi-
fiers and ensemble methods on UNSW-NB15 and SIMARGL2021 datasets.

[D] UNSW-NB15 (SGD_DT_kNN; D7, ε = 0.4)
Class OUR kNN SGD DT S.Vot. Stack. AdaB. HGBC
DoS 92.6 93.4 93.5 92.0 93.2 92.8 93.7 93.5

Exploits 90.0 87.1 86.5 89.5 89.3 89.8 87.1 90.8
Fuzzers 98.2 93.1 93.7 97.7 97.6 97.9 95.3 98.1
Generic 99.5 98.5 97.0 99.5 99.1 99.5 99.0 99.6
Normal 93.6 99.2 99.0 99.1 99.1 99.4 95.3 99.4
Others 98.1 97.6 97.5 97.9 97.8 97.8 97.5 98.0
Recon. 98.4 95.6 94.8 98.4 98.1 98.3 97.9 98.5

[D] SIMARGL2021 (DT_kNN_SGD; D5/D11, ε = 0.1)
Normal 100.0 98.8 98.1 100.0 99.6 100.0 64.8 99.9
Others 100.0 99.7 99.8 100.0 99.9 100.0 94.8 100.0
RUDY 99.4 99.0 97.4 100.0 99.9 100.0 61.1 100.0

SYNScan 100.0 99.8 100.0 100.0 100.0 100.0 99.4 100.0
Slowloris 99.4 99.3 98.5 100.0 99.9 100.0 75.5 100.0
UDPScan 100.0 99.7 99.6 100.0 99.8 100.0 84.2 100.0

Equally good results were also obtained for AUC measure (AUC in graphical form is pre-
sented in Figure 1.
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Table 4. True Positive Rate (sensitivity, %) of DAE method (OUR) compared to base classifiers and
ensemble methods for UNSW-NB15 and SIMARGL2021 datasets.

[D] UNSW-NB15 (SGD_DT_kNN; D7, ε = 0.4)
Class OUR kNN SGD DT S.Vot. Stack. AdaB. HGBC
DoS 29.7 9.0 4.2 35.7 13.1 22.7 1.1 30.5

Exploits 78.9 75.3 77.5 77.3 87.1 84.5 87.4 87.7
Fuzzers 88.6 77.5 62.5 83.8 86.2 88.0 54.9 89.4
Generic 98.0 96.4 96.4 98.3 97.8 98.3 97.3 98.2
Normal 98.5 98.1 98.4 98.9 98.6 98.7 98.6 98.7
Others 30.7 13.7 1.0 32.3 25.3 33.9 2.3 34.6
Recon. 76.8 56.9 62.1 76.8 77.1 76.9 78.3 77.8

[D] SIMARGL2021 (DT_kNN_SGD; D5/D11, ε = 0.1)
Normal 100.0 94.7 92.9 100.0 98.3 100.0 2.1 99.8
Others 99.9 98.2 97.8 100.0 99.8 100.0 0.0 100.0
RUDY 98.2 97.9 91.2 100.0 99.9 100.0 80.0 99.9

SYNScan 99.9 99.9 99.9 100.0 99.9 100.0 100.0 100.0
Slowloris 98.9 98.8 100.0 100.0 100.0 100.0 20.0 100.0
UDPScan 99.7 99.8 99.8 100.0 99.8 100.0 0.0 99.9

Table 5. Precision (PPV, %) of DAE method (OUR) compared to base classifiers and ensemble
methods for UNSW-NB15 and SIMARGL2021 datasets.

[D] UNSW-NB15 (SGD_DT_kNN; D7, ε = 0.4)
Class OUR kNN SGD DT S.Vot. Stack. AdaB. HGBC
DoS 66.1 35.6 30.9 35.2 35.8 36.5 27.6 45.6

Exploits 86.1 59.1 57.2 66.1 63.2 65.2 57.8 67.4
Fuzzers 93.5 59.6 66.5 90.1 87.0 89.4 89.3 89.9
Generic 99.9 96.1 89.5 99.3 97.8 99.3 97.8 99.7
Normal 71.0 99.8 99.2 98.9 99.2 99.8 90.6 99.9
Others 90.2 60.0 73.7 65.8 71.0 60.3 54.2 71.2
Recon. 91.7 59.2 50.6 90.7 85.2 89.7 80.8 92.9

[D] SIMARGL2021 (DT_kNN_SGD; D5/D11, ε = 0.1)
Normal 100.0 99.1 97.3 100.0 99.9 100.0 2.6 99.9
Others 99.2 96.5 97.7 100.0 98.5 100.0 0.0 100.0
RUDY 98.6 97.0 95.4 100.0 99.7 100.0 31.2 99.9

SYNScan 100.0 99.0 99.9 100.0 100.0 100.0 97.0 99.9
Slowloris 98.6 97.8 93.0 100.0 99.6 100.0 31.2 99.9
UDPScan 100.0 98.4 98.0 100.0 99.0 100.0 0.0 99.9

Table 6. F1-score (%) of DAE method (OUR) compared to base classifiers and ensemble methods
for UNSW-NB15 and SIMARGL2021 datasets.

[D] UNSW-NB15 (SGD_DT_kNN; D7, ε = 0.4)
Class OUR kNN SGD DT S.Vot. Stack. AdaB. HGBC
DoS 44.4 14.4 7.5 35.4 19.2 28.0 2.1 36.5

Exploits 69.9 66.2 65.8 71.2 73.2 73.6 69.6 76.2
Fuzzers 85.1 67.4 64.4 86.8 86.6 88.7 68.0 89.7
Generic 94.2 96.2 92.8 98.8 97.8 98.8 97.5 98.9
Normal 99.2 98.9 98.8 98.9 98.9 99.2 94.4 99.3
Others 43.5 22.3 2.1 43.4 37.3 43.4 4.5 46.6
Recon. 77.9 58.0 55.8 83.1 80.9 82.8 79.5 84.7

[D] SIMARGL2021 (DT_kNN_SGD; D5/D11, ε = 0.1)
Normal 99.9 96.9 95.0 100.0 99.1 100.0 2.3 99.8
Others 99.6 97.4 97.8 100.0 99.1 100.0 0.0 100.0
RUDY 98.6 97.4 93.2 100.0 99.8 100.0 44.8 99.9

SYNScan 100.0 99.5 99.9 100.0 99.9 100.0 98.5 100.0
Slowloris 98.6 98.3 96.4 100.0 99.8 100.0 24.4 100.0
UDPScan 99.9 99.1 98.9 100.0 99.4 100.0 0.0 99.9

6. Discussion of Results
The proposed Distributive Aggregation Ensemble (DAE) demonstrated compelling performance
across both datasets.

SIMARGL2021 dataset (DT_kNN_SGD; D5 and D11 ε = 0, 1) Comparing our method
with other classification techniques, it is evident that our approach generally outperformed or
matched the performance of other methods across various attack types. This underscores the
effectiveness and competitiveness of our method in the realm of network intrusion detection.
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Fig. 1. Benchmark analysis of AUC (for UNSW-NB15 and SIMARGL2021 datasets).

DAE method achieved a perfect accuracy rate of 100% in classifying normal network traffic.
This indicates that our approach excelled in distinguishing regular, non-malicious data from
potentially harmful activities. While some other methods also performed well, such as decision
trees and soft voting, they fell slightly short of our method’s accuracy.

In the case of the sensitivity for most classes, our method consistently outperformed the
base algorithms (excluding DT), AdaBoost, and soft voting. Notable the highest TPRs were
observed for "Normal" network traffic. The false positive rates were generally low, reflecting
the method’s ability to maintain a balance between sensitivity and specificity, which is crucial
for accurate intrusion detection.

For most classes it had high PPV, often matching or outperforming other methods. Notable
100% PPVs were observed for "Normal", "SYNScan" and "UDPScan" as for stacking and Deci-
sion Trees. AUC scores were consistently high, indicating excellent class separation and model
discrimination performance. Similarly, high F1-scores indicate the method’s ability to maintain
a balance between precision and recall, crucial for effective intrusion detection.

Statistical Validation
Table 7. Wilcoxon signed-rank test (SIMARGL2021).

Comparison Z p-value Effect Size Significance

DAE vs HGBC -1.52 0.128 0.21
DAE vs Stacking -0.94 0.347 0.13
DAE vs DT -2.01 0.044* 0.28 Medium
DAE vs Soft Voting -1.87 0.061 0.26
DAE vs kNN -3.21 0.001* 0.45 Large

Statistical validation from the above Table 7 confirmed significant superiority over k-NN
(p=0.001) and Decision Trees (p=0.044).

UNSW-NB15 dataset (SGD_DT_kNN; D7 ε = 0, 4) The results highlight the effectiveness
of DAE method in accurately classifying different types of network traffic, making it a promising
approach for enhancing cybersecurity measures. Our method excelled in detecting "Fuzzers"
attacks, achieving an impressive accuracy rate of 98.2%. DAE achieved competitive overall
accuracy across all classes, ranging from 90% to 99.5%. It outperformed most base algorithms
and ensemble methods across different attack classes. It also demonstrated high sensitivity in
most classes, especially in Fuzzers, Generic, Normal, and Reconnaissance. It outperformed
most base algorithms and ensemble methods in capturing true positives across various attack
types.

Our method exhibited low false positive rates across most classes, indicating its capability
to minimize misclassifications. It outperformed many base algorithms and ensemble methods
in controlling false positives.

Moreover, it achieved high precision in most classes, especially in Generic and Normal, in-
dicating its effectiveness in correctly identifying positive cases while minimizing false alarms.
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Our method consistently achieved high AUC scores across various attack classes, indicating its
ability to discriminate between positive and negative instances effectively, and competitive F1-
scores across different classes, showcasing its balanced performance in terms of precision and
recall.

Statistical Validation
Table 8. Wilcoxon signed-rank test (UNSW-NB15).

Comparison Z p-value Significance Effect Size

DAE vs HGBC -1.78 0.075 Small (0.18)
DAE vs Stacking -2.32 0.020* Significant Medium (0.31)
DAE vs DT -3.05 0.002* Significant Large (0.42)
DAE vs Soft Voting -2.11 0.035* Significant Medium (0.29)
DAE vs kNN -4.17 <0.001* Significant Large (0.58)

Statistical tests (see Table 8) revealed significant improvements over all base classifiers (k-
NN: p<0.001, DT: p=0.002) and ensemble methods (Soft Voting: p=0.035, Stacking: p=0.020),
while maintaining competitive performance with HGBC (p=0.075).

In summary, our method demonstrated superior performance in terms of measures across
various datasets and classes, especially in the SIMARGL2021 dataset, where it achieved very
high scores for most classes. This suggests that the choice of base classifiers and the characteris-
tics of the dataset can influence the performance of our method in terms of precision, sensitivity,
and/or accuracy. Moreover, based on the results presented, it is evident that the highest classifi-
cation performance metrics, in relation to the individual base classifiers and the SOTA method,
were not achieved using either the global distributivity equation (which remained consistent
across both datasets and, fortunately, for all measures) or a specific sequence of individual al-
gorithms within it, where X = P , Y = Ci and Z = Pi. It can be confidently stated that the
selection of aggregation functions satisfying the distributivity equation (1) also played a role in
achieving the best performance metrics. Generally, the most favorable results were primarily ob-
tained for equation D5, which involves a combination of the product t-norm with the harmonic
mean, as well as for the distributivity of the Lukasiewicz and Einstein t-norms with respect to
the Gödel t-norm. The choice of ε is also significant. For the most effective distributivity equa-
tions, its value tends to be closer to the first half of the interval (0, 1).

Conclusion
The Distributive Aggregation Ensemble presents an efficient and statistically robust framework
for network intrusion detection.

Ensemble methods indeed have a proven track record of improving the performance of clas-
sifiers, and our approach based on a distributivity equation is innovative.
Finding the right combination of classifiers and their configurations for a specific dataset is
a challenging task. It often requires experimentation and careful tuning.

The paper presents experimental results comparing the ensemble method based on distribu-
tive aggregations with individual classifiers and popular SOTA ensemble tools. We used several
performance measures to evaluate the effectiveness of the ensembles, including accuracy, sen-
sitivity, precision, FPR, F1-score, and AUC. Our algorithm demonstrated strong performance
across different datasets and classes, often outperforming or matching the base algorithms, Ad-
aBoost, and Soft Voting in terms of all considered measures. It is very comparable to the highly
respected HGBC technique. These results suggest that it is a promising approach for various
intrusion detection tasks.

Overall, this work seems promising in the context of enhancing network security through
machine learning techniques. It highlights the importance of ensemble methods and innovative
approaches in achieving better results in challenging domains like network attack detection.
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