
33RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2025 BELGRADE, SERBIA)

Improved DeepFool: Efficient Adversarial Attacks via Optimisation
and Refinement

Łukasz Mikołajczyk
AGH University of Krakow
Centre of Security Technologies
Krakow, Poland
Czestochowa University of Technology
Faculty of Computer Science and Artificial Intelligence
Czestochowa, Poland lukasz.mikolajczyk@agh.edu.pl

Piotr Duda
Robert Nowicki
Rafał Scherer
Czestochowa University of Technology
Faculty of Computer Science and Artificial Intelligence
Czestochowa, Poland
AGH University of Krakow
Faculty of Computer Science
and Center of Excellence in Artificial Intelligence
Krakow, Poland {piotr.duda, robert.nowicki, rafal.scherer}@pcz.pl

Abstract

This study addresses the vulnerability of AI systems to adversarial attacks by extending the
DeepFool algorithm. The paper proposes four new approaches and evaluates them according to
a set of criteria. The methods are inspired by various optimisation algorithms. One of the pro-
posed improvements adds the independent refinement stage, which reduces the final perturbation
without extra gradient computations. Experimental results show that an appropriately modified
algorithm reaches the decision boundary in fewer steps and with fewer gradient evaluations,
while the refinement stage further decreases the magnitude of the perturbation. The combined
approach can improve attack efficiency and reduce detectability, suggesting the potential for a
wider application of advanced optimisation techniques in adversarial example generation.

Keywords: Adversarial attack, DeepFool, Convolutional neural networks.

1. Introduction
Despite their remarkable success in various domains, neural networks remain susceptible to
adversarial attacks, which are carefully crafted perturbations of input data designed to deceive
models into making erroneous predictions. These attacks exploit the high-dimensional decision
boundaries learned by deep learning systems, where even imperceptible modifications can lead
to significant misclassifications. The existence of such vulnerabilities raises concerns for real-
world applications, particularly in security-sensitive areas such as autonomous driving, medical
diagnosis and biometric authentication.

Adversarial attacks are typically categorised by the attacker’s knowledge (white box vs black
box) and their objectives (targeted vs non-targeted). White-box attacks, such as the Fast Gra-
dient Sign Method (FGSM) [4] and Projected Gradient Descent (PGD) [17], use full-model
access to compute gradients and optimise perturbations. In contrast, black-box attacks rely on
transferability or query-based strategies to infer model behaviour. Among these, the DeepFool

ŁUKASZ MIKOŁAJCZYK ET AL. IMPROVED DEEPFOOL . . .

algorithm [13] stands out as a white-box method that iteratively pushes inputs toward the nearest
decision boundary with minimal perturbation, revealing the intrinsic fragility of the model. The
primary objective of this family of algorithms is to identify the smallest possible perturbation of
the input data that leads to a change in the output of the classifier. In the original formulation, the
authors employed an iterative method based on following the direction of the steepest descent
from the input data to the decision boundary. Each update is computed using the gradient of the
classifier output relative to the input. This approach can be viewed as an analogy to gradient-
based learning in neural networks, where the “layer” being trained is the input data perturbation
itself.

The arms race between adversarial attacks and defences underscores the need for robust
models and a deeper understanding of attack mechanisms. Although adversarial training and
input preprocessing offer partial mitigation, improving the efficiency and concealment of attacks
(e.g. reducing perturbation magnitude or computational cost) remains an active research area.

This work extends DeepFool by integrating distinct optimisation and adaptive step size
techniques to accelerate convergence while maintaining low perceptibility. In other words,
we propose a modification of the decision boundary search steps by augmenting the basic
gradient-based approach with scaling or second-order methods, specifically, techniques inspired
by momentum-based learning and the Adam optimisation algorithm. In addition, an auxiliary
perturbation refinement stage is introduced; this stage is independent of the main algorithm
variant used and aims to reduce the magnitude of the perturbation, thereby decreasing the like-
lihood of detection. Our experiments demonstrate that these modifications are able to improve
attack efficiency, reduce detectability, and offer insights into the interplay between optimisation
methods and adversarial robustness.

The performance of the proposed modifications to the DeepFool algorithm, including the
auxiliary refinement stage, was thoroughly evaluated and compared against the original algo-
rithm. The comparison involved metrics such as the number of steps, the magnitude of the
perturbation and the runtime. The effect of the added adversarial noise has been visualised us-
ing the Grad-CAM [3] technique; see Figure 1 and 2. Grad-CAM (Gradient-weighted Class
Activation Mapping) is a visualisation technique that highlights the regions of an input image
most influential for a neural network’s prediction. It uses gradients flowing into the final con-
volutional layer to produce a heat map showing where the model focuses to make its decision.
This helps interpret model behaviour, debug misclassifications and validate if its attention aligns
with human intuition.

Fig. 1. Grad-CAM visualisation of a selected image from Tiny ImageNet dataset. ResNet-50. From
the left: original image, heat map of original image, heat map of perturbed image, perturbation
shifted above zero and 100× magnified, normalised perturbation.

The rest of the paper is organised as follows. The survey on recent adaptations of attacks
based on the DeepFool algorithm is presented in Section 2. A detailed description of the Deep-
Fool algorithm is presented in Section 3. The aforementioned alterations are presented in Sec-
tion 4. Section 5 contains a description of the simulations conducted and a comparison of the
results obtained for various evaluation criteria. The summary and final conclusions are included
in Section 6.

ISD2025 BELGRADE, SERBIA

2. Related works
In 2016, the DeepFool algorithm [13] was proposed as the foundation for a whole line of ap-
proaches set to deceive neural networks by introducing appropriate noise that causes the classi-
fier to change its decision regarding the most probable class.

In a study first published in 2023 [8], a strategy was considered, in which the algorithm
aims not only to fool the classifier but also to ensure that the input is assigned to a user-specified
target class. In addition, a condition was introduced that enforces a minimum confidence level
of the classifier for the specified class.

In [1], a mathematical analysis of the considered attacks was presented, focusing on the ℓ2
robustness metric. Based on the evaluation, a family of algorithms was proposed that improves
the trade-off between computational cost and attack effectiveness.

The SparseFool algorithm is a geometry-inspired attack that takes advantage of the low mean
curvature of the decision boundaries to quickly and efficiently generate sparse perturbations
[12]. It outperforms the other methods compared in terms of speed, scales well with high-
dimensional data and enables control over the perceptibility of perturbations without sacrificing
their effectiveness.

The YOAO algorithm, proposed in [10], enhances DeepFool by analysing the gradients
of all classes with respect to the true class to generate adversarial examples in just a single
iteration. This results in a 68% increase in the attack success rate compared to the original
version. Moreover, YOAO features lower time complexity and greater efficiency in misleading
various neural networks than the existing methods.

3. DeepFool Algorithm for multi-class problem
This section presents the operating principles of DeepFool, outlined in Algorithm 1, designed
for multinomial classification problems, as proposed in the original article [13] and served as a
foundation for many types of attack described in Chapter 2.

Let f(x) denote the output of the classifier for a data element x. The predicted class is
then determined as the label corresponding to the maximum output of the classifier, i.e. k̂(x) =
sign(f(x)). The goal of the algorithm is to find a perturbation that, when added to the original
image, changes the prediction of the network. To achieve this, the following steps are repeated
until the desired misclassification is reached. For all labels k different from the correct one:

• The algorithm computes the difference, denoted w′
k, between the gradient of the classifier

output for class k and the gradient for the class originally predicted k0.

• The difference in activation levels between class k and k0 is calculated, denoted as f ′
k.

The algorithm selects the class l̂ that minimises the ratio of the absolute value of f ′
k and the

squared ℓ2 norm of the difference of gradients w′
k. Then a new perturbation is computed by

scaling the gradient difference w′
k using this ratio. This perturbation ri is added to the most re-

cently modified image and the stopping criterion is checked again. Once the stopping condition
is satisfied, the algorithm returns the final adversarial perturbation r̂i. It should be remarked
that, in the Official Implementation [11], |f ′

l̂
| of ri is biased with a small value of 1e−4 for

computational stability, possibly providing too large a step in some scenarios, while the number
of k labels in a search space is parametrically limited.

4. Proposed Modifications
We present several methods inspired by the DeepFool algorithm, as described in the previous
section. Each variation seeks to improve the overall perturbation scale and computation time,
preferably at once.

ŁUKASZ MIKOŁAJCZYK ET AL. IMPROVED DEEPFOOL . . .

Algorithm 1 DeepFool: multi-class case

input:
Image x
Classifier f

output:
Perturbation r̂

1: x0 ← x, i← 0
2: while k̂(xi) = k̂(x0) do
3: for k ̸= k̂(x0) do
4: w′

k ← ∇fk(xi)−∇fk̂(x0)
(xi)

5: f ′
k ← fk(xi)− fk̂(x0)

(xi)
6: end for
7: l̂← argmink ̸=k̂(x0)

|f ′
k|

||w′
k||2

8: ri ←
|f ′

l̂
|

||w′
l̂
||22
w′
l̂

9: xi+1 ← xi + ri
10: i← i+ 1
11: end while
12: return r̂ =

∑
i ri

The first modification is derived from the widely used gradient descent technique in model
training. This method seeks to accelerate convergence by adjusting the step size, moving either
further or closer, depending on whether the loss function’s gradient changes sign. Similarly, in
DeepFool, we move in the direction indicated by the gradient of the loss function, aiming only
to cross the decision boundary. Therefore, this alteration of DeepFool can be formulated as an
enhancement of the perturbation step, as shown in Equation (1).

ri ←
|f ′

l̂
|

||w′
l̂
||22

w′
l̂
+ βri−1 (1)

In recent years, Momentum has been largely replaced by optimisation techniques that offer faster
convergence. In particular, we were inspired by the widely adopted Adam optimiser [7] and
proposed its application in the task of finding minimal adversarial perturbations, as demonstrated
in Algorithm 2, named here qAdam. It incorporates moving averages of gradients and squared
gradients to adaptively modify the size of the perturbation. Steps 1 to 7 remain the same as in
Algorithm 1; the difference lies in how the new perturbation is computed.

In the third method, we introduce a scaling factor γ, adjusting the magnitude of DeepFool’s
ith step perturbation – in Equation (2), the calculated norm is weighed by making the scalar
larger, thus the result of a given loop iteration will be smaller, possibly leading to increased
effectiveness. The opposite scenario is also plausible. By further modifying the weight γi, as
seen in Equations (3) and (4), where x is a scalar base and y is a step, achieving a “best of both
worlds” might be possible: firstly, the weight is decreased, thus lengthening the step, while in
latter iterations, the weight increases, linearly or exponentially diminishing the added perturba-
tion. It must be noted, however, that the non-linear increment is not going to be computationally
stable in highly complex scenarios, e.g. during operations on images having high pixel counts,
possibly yielding a memory overflow, therefore the selection of hyperparameters should be made
with greater care; values of x ∈ [0.5, 0.8] and y ∈ [1.5, 2] are preferred.

ri ←
|f ′

l̂
|

γi||w′
l̂
||22

w′
l̂

(2)

ISD2025 BELGRADE, SERBIA

Algorithm 2 The qAdam algorithm

input parameters:
Learning rate lr
Running coefficient (decay) for∇ β1
Running coefficient (decay) for∇2

β2

Steps 1 to 6 as in Algorithm 1
. . .

7: l̂← argmink ̸=k̂(x0)

|f ′
k|

||w′
k||2

8: mi ← β1 ×mi−1 + (1− β1)× w′
l̂

9: vi ← β2 × vi−1 + (1− β2)× w′
l̂

2

10: m̂i ← m÷ (1− β1
i+1)

11: v̂i ← v ÷ (1− β2
i+1)

12: α← m̂i × lr√
v̂i+ϵ

13: ri ←
|f ′

l̂
|

||w′
l̂
||22
w′
l̂
+ α

. . .

γi ← x+ yi (3)

γi ← x× yi (4)

Finally, we propose a last section minimisation postMin. As can be seen in Algorithm 3,
this method relies on the last perturbation fragment found that results in a sign change (where
ki ̸= k0). Simple directional operation of subtraction or addition of diminishing fragment of the
last gradient difference may result in a smaller norm of the perturbation, thereby improving the
base algorithm, or, in boundary cases, improve the Fooling Rate by possibly breaching the close
decision hyperplane. Since the calculation takes place outside of the main loop, the routine is
independent of other modifications and can be applied to alter them further.

5. Experimental results
Testing was carried out on a machine running Ubuntu 24.04.2 LTS, AMD Ryzen 5800x, 32GiB
RAM, NVIDIA RTX 3070 with 8GiB of VRAM, using Driver 550.120. The machine learning
algorithms and their corresponding weights were sourced from and powered by PyTorch [14]:

• ResNet-50 [5] – deep residual learning image classifier, depth of 50 layers, 25M params,

• VGG-19 [16] – deep convolutional neural network, depth of 19 layers, 144M params.

The assortment was dictated by the popularity of the respective families in image classifica-
tion tasks, the listed representatives being relatively close in ImageNet classification (accuracy:
ResNet-50 of 75.3% vs 72.38% for VGG-19, as can be seen in the previously cited papers), yet
differing significantly in the number of training parameters – providing insight in the importance
of model complexity in adversarial actions.

The datasets selected for the research are modified versions of ImageNet [2], which are
easily accessible on Hugging Face:

• Tiny ImageNet [9] – resolution limited to 64 × 64px RGB images with 200 different
classes, split into “Train” and “Valid” subsets, containing 100000 and 10000 records,
respectively,

ŁUKASZ MIKOŁAJCZYK ET AL. IMPROVED DEEPFOOL . . .

Algorithm 3 Minimisation of the boundary-piercing perturbation postMin

input parameter:
Scale limit ϵ

Steps 3 to 8 as in Algorithm 1
1: x0 ← x, i← 0
2: while k̂(xi) = k̂(x0) do

. . .
9: xi+1 ← xi + ri

10: i← i+ 1
11: end while
12: α← 0.5

13: rlast ← ri
14: while α > ϵ do
15: if k̂(xi) ̸= k̂(x0) then
16: ri ← −α× rlast
17: else
18: ri ← α× rlast
19: end if
20: α← 0.5× α
21: xi+1 ← xi + ri
22: i← i+ 1
23: end while
24: return r̂ =

∑
i ri

• Mini-ImageNet [15] – small subset of the original, with preserved resolution and using
100 classes, having 50000, 10000 and 5000 RGB images in “Train”, “Validation” and
“Test” splits.

The last and least numerous splits of the datasets were used. The resolution of Mini-ImageNet
was limited to, at most, 1080000px. DeepFool’s class label search was limited to default top
10 and overshoot set to default 0.02. The tested method postMin is limited by a very small ϵ =
1e−12, leading to an increase in the number of loop iterations equal to 39, as 1

2

39 ≈ 1.82e−12
and will be lower for the stopping condition, as seen in Algorithm 3. Results for qAdam obtained
with standard β1 = 0.9 and β2 = 0.999. For additional information on the data in tables, please
refer to the footnotes. The result instability of ±1% should be assumed for method safety.

5.1. Prerequisites

The preprocessing of the data is a crucial step prior to the neural network training. However, the
adversary cannot control the actions of a potential victim, who is very likely to apply random
rotation, scaling and standardisation. For the purpose of the comparative study, a level playing
field is necessary – as seen in Table 1, the process of standardisation (Z-score calculation) using
ImageNet’s values of µ = {0.485, 0.456, 0.406} and σ = {0.229, 0.224, 0.225} yields a change
in perturbation magnitude and diminishes effects of the modifications, without shifting their po-
sition compared to the relatives. It must be noted that applying some form of a standardisation,
preferably image-based, might be crucial for the bad actor – with the aforementioned process in
place, perturbations based on raw data will perish. Visual comparison is available in Figure 2.
Since the study does not focus on their transferability, raw data provides a view of the best-case
scenario, isolating the effects of the modification, similar to the article [6]. The presented values
of perturbation robustness ρ were calculated using Equation (5) as a basis, which was proposed

ISD2025 BELGRADE, SERBIA

Fig. 2. Grad-CAM visualisation of a selected image from Tiny ImageNet dataset. ResNet-50. Top:
raw data, bottom: standardised. From the left: original image, heat map of original image,
heat map of perturbed image, perturbation shifted above zero and 100× magnified, normalised
perturbation.

in the original publication [13], where f is a classifier, ρ̄adv(f) is an average perturbation ro-
bustness over the dataset D . For simplification, this given designation is shortened to ρ̄ in the
tables. Similarly, ρ̃ denotes the median value of ρ in the dataset, while σρ denotes the standard
deviation of the values.

ρ̂adv(f) =
1

D

∑
x∈D

||r̂(x)||2
||x||2

(5)

5.2. Result Analysis

The proposed modifications were tested with a range of hyperparameters, creating a broad pos-
sible time or perturbation robustness spectra. It can be noted that postMin improves upon the
base methods, yet resulting in a significant extension of the runtime, still proving its usefulness.
The vastness of improvement depends on the tested network and, possibly, magnitude of the
perturbation – higher orders thereof might mean the possible range of improvement (distance
from hyperplane) is relatively very small, diminishing the return (possible explanation for re-
sults in Table 2). A good medium between the mentioned method and the original version is γ
weighing, resulting, in most cases, in a not very significant increase in runtime, while leading to
a smaller perturbation.

On the other end of the spectrum, methods with “sliding” γ value or qAdam, seem to speed
up the search process – burdened with a vastly more perceptible perturbation. With certainty,
those would present themselves “in a better light” if only the dataset contained large-resolution
images – a foretaste of what the results for Mini ImageNet give (see Table 3). Furthermore,
these necessitate additional hyperparameter tuning, possibly bringing the faster modifications

1All of the ρ values in scientific notation e−6.
2Values of ρ in scientific notation e−6, e−5 for σρ.
3Maximum of 50 iterations of the algorithm’s inner loop used instead of 1000 in other cases.
4Values of ρ̄ and σρ in scientific notation e−5, ρ̃ in e−6.
5Learning rate of 1e−5.
6As in 7, but with σρ in e−3.
7Values of ρ in scientific notation e−4.
8Learning rate of 6e−5.

ŁUKASZ MIKOŁAJCZYK ET AL. IMPROVED DEEPFOOL . . .

Table 1. Effect of data standardisation on selected methods: Tiny ImageNet & ResNet-50

Variant
Raw data1 Standardised2

T[ms] ī ρ̄ ρ̃ σρ T[ms] ī ρ̄ ρ̃ σρ

po
st

M
in

γi = 1.3 360 41.22 4.25 2.11 6.64 425 42.22 6.86 3.17 1.10

Original 339 40.87 4.62 2.27 7.14 376 41.56 7.33 3.38 1.18

β = 0.3 325 40.76 5.08 2.30 8.39 359 41.29 8.24 3.59 1.41

γi =
3
4 + 1

8 i 347 40.93 5.04 2.46 7.78 408 41.94 7.83 3.66 1.28

γi = 1.3 151 2.22 5.22 2.99 6.52 209 3.19 7.44 3.74 1.10

Original 129 1.87 6.01 3.63 7.02 172 2.58 8.22 4.27 1.19

Original 503 130 1.87 6.01 3.63 7.00 172 2.58 8.21 4.27 1.19

β = 0.3 121 1.76 6.79 3.77 8.60 158 2.29 9.59 4.76 1.46

γi =
3
4 + 1

8 i 136 1.94 7.05 4.53 7.57 192 2.93 9.12 4.92 1.28

Table 2. Modification effectiveness – ResNet-50

Variant
Tiny ImageNet1 Mini ImageNet4

T[ms] ī ρ̄ ρ̃ σρ T[ms] ī ρ̄ ρ̃ σρ

po
st

M
in

γi = 1.3 360 41.22 4.25 2.11 6.64 764 41.87 1.03 4.02 1.73

Original 339 40.87 4.62 2.27 7.14 597 40.85 1.10 4.16 1.91

β = 0.1 337 40.83 4.75 2.29 7.45 583 40.73 1.13 4.17 2.01

β = 0.3 325 40.76 5.08 2.30 8.39 571 40.66 1.20 4.22 2.19

γi =
3
4 + 1

8 i 347 40.93 5.04 2.46 7.78 537 40.45 1.19 4.25 2.10

γi =
1
2 + 1

8 i 333 40.57 6.21 2.79 10.0 496 40.18 1.38 4.32 2.63

qAdam5 308 40.35 12.0 4.65 16.4 505 40.14 1.43 6.25 2.23

γi = 1.3 151 2.22 5.22 2.99 6.52 476 2.87 1.04 4.14 1.75

Original 503 130 1.87 6.01 3.63 7.00 319 1.85 1.12 4.39 1.91

Original 129 1.87 6.01 3.63 7.02 314 1.86 1.12 4.41 1.89

β = 0.1 130 1.84 6.22 3.68 7.39 295 1.73 1.19 4.60 2.04

β = 0.3 121 1.76 6.79 3.77 8.60 284 1.66 1.36 5.03 2.34

γi =
3
4 + 1

8 i 136 1.94 7.05 4.53 7.57 250 1.45 1.30 5.47 2.10

γi =
1
2 + 1

8 i 121 1.63 9.93 6.67 10.0 209 1.18 1.84 8.10 2.83

qAdam5 101 1.35 28.3 24.2 13.7 207 1.14 3.12 24.7 2.15

ISD2025 BELGRADE, SERBIA

Table 3. Modification effectiveness – VGG-19

Variant
Tiny ImageNet6 Mini ImageNet7

T[ms] ī ρ̄ ρ̃ σρ T[ms] ī ρ̄ ρ̃ σρ

po
st

M
in

γi = 1.3 262 40.74 8.02 2.59 1.29 1331 41.08 4.89 1.82 0.95

Original 260 40.59 8.78 3.09 1.39 1290 40.83 5.25 1.90 1.01

β = 0.1 246 40.56 8.85 3.05 1.40 1234 40.81 5.43 1.95 1.02

β = 0.3 249 40.54 9.34 3.31 1.52 1210 40.75 5.87 2.01 1.24

γi =
3
4 + 1

8 i 254 40.46 9.27 3.35 1.48 1179 40.65 5.76 2.16 1.11

qAdam8 253 40.54 9.28 3.52 1.41 1197 40.70 5.82 2.52 1.07

γi =
1
2 + 1

8 i 231 40.32 10.6 4.10 1.74 1085 40.39 6.63 2.46 1.34

γi = 1.3 160 1.74 10.8 5.94 1.39 816 2.10 5.76 2.77 0.97

β = 0.1 145 1.57 13.0 7.45 1.30 705 1.81 6.73 3.34 1.11

Original 148 1.60 12.8 7.51 1.56 712 1.85 6.51 3.38 1.06

Original 503 149 1.58 12.8 7.52 1.58 698 1.86 6.50 3.34 1.06

β = 0.3 142 1.54 14.0 7.84 1.79 679 1.73 7.46 3.61 1.30

γi =
3
4 + 1

8 i 157 1.46 14.7 9.03 1.73 627 1.65 7.29 3.87 1.18

qAdam8 154 1.54 13.6 8.48 1.53 680 1.69 7.49 4.30 1.10

γi =
1
2 + 1

8 i 136 1.30 19.9 12.6 2.32 536 1.4 9.74 5.30 1.52

closer to the original.

6. Summary and Conclusions
This study presents an extended concept of the DeepFool method along with experimental re-
sults that allow comparison with the original algorithm. The proposed extension consists of two
components. The first involves introducing a modified iterative procedure for calculating per-
turbations, analogous to neural network training using momentum and the Adam algorithm, just
as the original DeepFool algorithm can be closely associated with the backpropagation method.
It is expanded further by scaling factor of the perturbation. Both the original and the extended
algorithms are supplemented by an additional stage aimed at minimising the perturbation to the
necessary minimum.

The experimental results confirmed that the modified DeepFool method can reach the deci-
sion boundary in fewer iterations compared to the original approach. In particular, in all variants
of the evaluated algorithm, the distance gradient to the decision boundary is computed at each
iteration. Therefore, the proposed modifications may also reduce the total number of gradient
computations. However, there is a side effect of the modification – a larger final perturbation,
severity of which is highly dependant on the chosen hyperparameters, which can be concluded
from the result, albeit limited. In contrast, an increased number of iterations in computing gradi-
ents might prove to be more time saving, compared to the proposed additional refinement stage;
it has improved the results of every single variant tested, yet it has emphatically increased exe-
cution time. Importantly, these conclusions are based on relatively low-resolution images, thus
the cost of gradient calculation rise along with the resolution is highly probable.

ŁUKASZ MIKOŁAJCZYK ET AL. IMPROVED DEEPFOOL . . .

An intriguing outcome of the conducted research is the potential application of various opti-
misation criteria previously used in neural network training. The scope of such criteria extends
beyond the modifications proposed and evaluated in this publication. Many of these are more
sophisticated and warrant further investigation to assess their applicability in this context.

Acknowledgement
We express our gratitude for the funding support provided by the program “Excellence initiative–
research university” for the AGH University in Krakow, as well as the ARTIQ project (UMO-
2021/01/2/ST6/00004 and ARTIQ/0004/2021), and by the funds of the Polish Ministry of Sci-
ence and Higher Education assigned to the AGH University of Krakow.

References
[1] Abroshan, M., Moosavi-Dezfooli, S.M., et al.: Superdeepfool: a new fast and accurate

minimal adversarial attack. Advances in Neural Information Processing Systems 37, pp.
98537–98562 (2024)

[2] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition. pp. 248–255 (2009)

[3] Gildenblat, J., contributors: Pytorch library for cam methods. https://github.com/
jacobgil/pytorch-grad-cam (2021)

[4] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015)

[5] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–
778 (2016)

[6] Jelassi, S., Li, Y.: Towards understanding how momentum improves generalization in
deep learning. In: International Conference on Machine Learning. pp. 9965–10040. PMLR
(2022)

[7] Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: the 3rd Interna-
tional Conference for Learning Representations, San Diego. vol. 5 (2015)

[8] Labib, S.F.R., Mondal, J.J., Manab, M.A., Xiao, X., Newaz, S.: Tailoring adversarial
attacks on deep neural networks for targeted class manipulation using deepfool algorithm.
Scientific Reports 15(1), pp. 10790 (2025)

[9] Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), pp. 3 (2015)

[10] Li, J., Xu, Y., Hu, Y., Ma, Y., Yin, X.: You only attack once: Single-step deepfool algo-
rithm. Applied Sciences 15(1), pp. 302 (2024)

[11] LTS4: DeepFool. https://github.com/lts4/deepfool (2015), accessed 2025-
03-16

[12] Modas, A., Moosavi-Dezfooli, S.M., Frossard, P.: Sparsefool: a few pixels make a big
difference. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 9087–9096 (2019)

ISD2025 BELGRADE, SERBIA

[13] Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method
to fool deep neural networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 2574–2582 (2016)

[14] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch:
An imperative style, high-performance deep learning library (2019), https://arxiv.
org/abs/1912.01703

[15] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV) 115(3), pp. 211–
252 (2015)

[16] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: 3rd International Conference on Learning Representations (ICLR 2015).
Computational and Biological Learning Society (2015)

[17] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. In: 2nd International Conference on Learning
Representations, ICLR 2014 (2014)

