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Abstract 

Adapting large language models (LLMs) to formal, low-resource domains-such as public 

procurement or regulatory writing-remains a significant challenge, particularly in non-

English contexts. We present a lightweight hybrid framework that combines symbolic 3-

gram Markov models with neural generation using DistilGPT2. The approach introduces 

symbolic guidance in two stages: domain-specific few-shot prompting and decoding-time 

probability adjustment. This enables domain-consistent generation without model 

retraining. Evaluated on Polish public procurement documents and deployed on CPU-only 

infrastructure, the method improves domain fidelity, structure, and semantics, as measured 

by BLEU, ROUGE-L, and BERTScore. The proposed framework offers a scalable, 

inference-only alternative to fine-tuning for generating formal texts under strict resource 

constraints. 

 

Keywords: domain-adaptation, Markov models, few-shot prompting, guided decoding, 

resource-efficient NLP. 

1. Introduction 

Adapting large language models (LLMs) to formal, low-resource domains—such as public 

procurement or regulatory writing—poses unique challenges. These domains feature rigid 

syntax, repetitive structures, and specialized terminology, often in under-resourced 

languages like Polish or Hungarian. Unlike general-purpose corpora, they demand stylistic 

and structural fidelity that standard prompting fails to capture [14]. 

While fine-tuning or continued pretraining offers one solution, these approaches are 

often infeasible due to computational and storage costs, especially in constrained settings 

like public sector infrastructure [12]. Recent methods like LoRA [8] offer parameter-

efficient alternatives, but still require access to model internals and GPU resources.  

Inference-only methods that maintain domain alignment without retraining are therefore 

highly desirable. 

We introduce SymbSteer, a hybrid symbolic-neural framework for low-resource 

domain adaptation. It uses a simple trigram Markov model to (1) generate domain-

representative few-shot prompts and (2) apply decoding-time token biasing. Combined 

with DistilGPT2, this setup enables domain-consistent generation on CPU-only 

infrastructure without updating model weights. 

We evaluate our method on a corpus of Polish public procurement texts, demonstrating 

improved structural and semantic alignment through BLEU, ROUGE-L, and BERTScore. 

 

2. Background and Related Work 

Natural Language Generation (NLG) is a fundamental challenge in natural language 

processing (NLP), especially when applied to formal, domain-specific texts such as legal, 
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procurement, or regulatory documents. These texts are characterized by rigid syntax, 

repetitive structures, and specialized terminology, complicating syntactic coherence and 

semantic fidelity in machine-generated outputs [3]. 

Traditional approaches to text generation include statistical language models [16] (e.g., 

n-grams, Markov chains), deep neural architectures (e.g., LSTMs, RNNs), and more 

recently, large-scale Transformer-based pre-trained language models (PLMs) like GPT, 

BERT and Falcon [6], [9], [21]. While PLMs have significantly advanced the fluency and 

coherence of generated text, they often fail to internalize strict domain constraints without 

extensive supervised fine-tuning, which is infeasible in many real-world low-resource 

contexts [12]. 

As a viable alternative, few-shot prompting techniques have emerged, in which 

domain-specific examples are embedded in the prompt to simulate learning without 

parameter updates. However, such methods can fail when token order and formal 

consistency are crucial. 

Symbolic and statistical methods such as Markov chains have a long tradition in 

modeling local linguistic patterns. A 3-gram Markov model, for instance, estimates 

transition probabilities between word sequences based on short context windows, 

effectively capturing domain-consistent phraseology [16]. These models are interpretable, 

computationally inexpensive, and well-suited to domains with formulaic language, such as 

public tenders or legal drafts [19]. 

Recent studies suggest that combining symbolic priors with neural decoders—via 

either logit steering or synthetic prompting—can guide large language models more 

effectively in low-data settings [15]. Controlled decoding strategies (e.g., plug-and-play 

models) have demonstrated that modifying output distributions at generation time can 

significantly enhance alignment with target constraints, even without fine-tuning [2]. 

 

3. Method - SymbSteer Framework 

3.1. Overview 

SymbSteer is a hybrid symbolic-neural framework designed for domain adaptation without 

model retraining. It uses a trigram Markov model trained on a small, domain-specific 

corpus to provide symbolic guidance at two stages of the generation pipeline: (1) input 

prompting and (2) decoding. These components operate independently of the LLM’s 

architecture and enable low-resource, inference-only adaptation.  

3.2. Symbolic Prompt Generator 

We first train a simple trigram Markov model on a curated corpus of formal procurement 

documents. This model captures domain-specific token transition patterns, which reflect 

legal phrasing and fixed syntactic structures. We use it to generate synthetic sequences that 

resemble in-domain language and insert them as few-shot examples at the start of the 

LLM’s context. 

Unlike human-curated prompts, these synthetic examples are automatically sampled 

and lightweight, enabling adaptation even with minimal labeled data. They help prime the 

LLM to follow the syntactic and stylistic conventions of the domain, enhancing formal 

consistency during inference. 

3.3. Symbolic Decoding Controller 

Beyond prompting, we introduce decoding-time control by incorporating symbolic 

likelihoods into token selection. At each step of generation, the LLM’s output probabilities 

are blended with probabilities from the Markov model. This reweighting biases the decoder 

toward transitions consistent with domain-specific patterns. 

Rather than altering the LLM’s weights, we apply a simple adjustment to the predicted 

token scores before sampling. The degree of symbolic influence is tunable via a blending 

parameter, allowing fine-grained trade-offs between fluency and structural fidelity. This 

adjustment integrates seamlessly with existing decoding methods (e.g., top-k, nucleus 

sampling) and requires no architectural changes. 
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At each decoding step, we blend the token probabilities from the LLM and the Markov 

model using: 

 

𝑃𝑓𝑖𝑛𝑎𝑙
′ (𝑤𝑡) ∝ 𝑃𝐿𝑀(𝑤𝑡|𝑤<𝑡)𝜆 ∙ 𝑃𝑀𝑎𝑟𝑘𝑜𝑣(𝑤𝑡|𝑤𝑡−1, 𝑤𝑡−2)1−𝜆 (1) 

 

where 𝜆∈[0,1] controls the balance between fluency and symbolic conformity.  

 

3.4. Combined System 

The two mechanisms—symbolic prompting and Markov-guided decoding—operate in 

tandem. Prompting sets the tone and structure for initial generation, while decoding 

correction maintains alignment throughout the output. Together, they reinforce phrase 

consistency, prevent style drift, and ensure outputs remain domain-appropriate across long 

sequences. 

Because both steps occur during inference, the system remains lightweight and easily 

deployable in environments lacking GPU acceleration or training capabilities. This makes 

SymbSteer especially suited for constrained applications such as government NLP or low-

budget institutional research. 

 

4. Symbolic Prior Extraction from Domain Corpus 

We construct a trigram Markov chain model trained on a curated corpus of Polish public 

procurement documents to obtain a lightweight symbolic representation of domain-specific 

linguistic structure. These texts include formal tenders and legal notices related to 

university construction projects-a subdomain that exemplifies highly regular syntax, 

formal institutional phrasing, and constrained semantic intent. Such characteristics make 

this dataset an ideal testbed for exploring symbolic modeling of structural patterns in 

formal domains [5]. 

The final corpus contains 52,867 tokens, from which we extract 23,188 unique trigram 

sequences. Each trigram consists of a pair of consecutive words (𝑤𝑖,𝑤𝑖+1), called the prefix, 

followed by a successor token 𝑤𝑖+2. The model estimates the probability of encountering a 

particular successor word given the prefix, thereby encoding a representation of the local 

syntactic flow prevalent in the domain. The resulting transition graph forms a first-order 

approximation of domain-specific language sufficient to capture repetitive constructions, 

formal legal clauses, and typical clause openers [16]. 

Formally, for each trigram (𝑤𝑖,𝑤𝑖+1,𝑤𝑖+2), we estimate the transition probability: 

 

𝑃(𝑤𝑖+2|𝑤𝑖 , 𝑤𝑖+1) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖,𝑤𝑖+1,𝑤𝑖+2)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑖,𝑤𝑖+1,𝑤′)
𝑤′

 (2) 

 

This probability estimates the likelihood of token 𝑤𝑖+2 appearing after the pair (𝑤𝑖,𝑤𝑖+1), 

computed by normalizing the observed count of the full trigram over all possible successors 

following the same prefix. While this structure lacks long-range syntactic or discourse 

awareness, it is sufficient to model surface-level regularities and local cohesion-a frequent 

characteristic of domain-specific documentation [19]. 

We leverage the resulting symbolic model in two complementary roles: 

• We sample sequences from the trained Markov chain to create synthetic, 

domain-representative utterances. These synthetic examples reflect common 

collocations and phrase templates seen in public tenders and are embedded into 

few-shot prompts. The goal is to prime the language model with structurally 

valid and stylistically accurate inputs, enhancing domain alignment before 

generation begins. 

• During generation with DistilGPT2, we dynamically adjust the model’s output 

logits based on the Markov model’s transition probabilities. At each time step, 

tokens likely to occur (given the recent context) according to the Markov model 

receive a positive bias, while unlikely tokens are penalized. This ensures that 
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the model's output distribution follows the correct continuation, the model 

weights are not altered, and the gradient is updated. This method supports top-

k or nucleus sampling [7]. 

5. Experimental Setup 

5.1. Dataset 

We use a curated corpus of Polish public procurement documents, characterized by 

repetitive phrasing, legal structure, and constrained vocabulary. The domain features long 

average sentence lengths (~25 words), a low type-token ratio (0.19), and over 40% trigram 

repetition — indicating high structural regularity typical of formal administrative texts [5],  

[9]. 

These properties make the dataset ideal for evaluating symbolic domain adaptation. 

The Markov model is trained on 52,867 tokens, capturing local word transitions that reflect 

the domain’s rigid linguistic patterns. 

5.2. Models and Baselines 

We use DistilGPT2-small (82M parameters) ), a distilled variant in the GPT family inspired 

by the principles of DistilBERT [18], for its efficient inference on CPU-only hardware, 

without retraining or gradient updates. Our approach operates entirely at inference time, 

allowing symbolic prompting and decoding to adapt generation behavior without 

modifying the model. 

All experiments were conducted using Databricks Community Edition (CPU-only). 

This setup demonstrates feasibility for real-world deployments in constrained 

environments [4]. 

We compare four configurations to isolate each component’s contribution described in 

section 6.1 (Table 1.):  

 
Table 1. Overview of model variants used in evaluation. Each configuration varies in the use of symbolic 

prompting and/or decoding to steer domain-specific generation. 

Model Variant Description 

Vanilla Prompting Few-shot prompt manually selected, no symbolic augmentation. 

Symbolic Prompting Few-shot prompt generated via Markov sampling. 

Markov Decoding Symbolic bias during token selection, no prompting. 

Full Hybrid Combined symbolic prompting + decoding. 

 

5.3. Evaluation Metrics 

To evaluate the effectiveness of our hybrid framework, we adopted the metrics - BLEU, 

ROUGE-L, and BERT Score - each of which captures different aspects of generation 

quality and provides a comprehensive view of the model's performance in the target 

domain [11], [17]. 

We assessed model outputs using the following: 

• BLEU (Bilingual Evaluation Understudy) measures the precision of n-gram 

overlaps between the generated output and a reference text. It evaluates how many 

n-gram sequences in the generated text appear in the reference, capturing lexical 

accuracy and fluency at multiple levels. BLEU incorporates a brevity penalty (BP) 

that discourages under-generation to prevent the model from generating 

excessively short outputs. Formally, BLEU is defined as: 

 

𝐵𝐿𝐸𝑈 = 𝐵𝑃 ∙ 𝑒𝑥𝑝(∑ 𝑤𝑛𝑙𝑜𝑔(𝑝𝑛)𝑁
𝑛=1 ) (3) 

 

where 𝑝𝑛 is modified precision for n-grams of size n, wn is weight assigned to each n-gram 

size (typically uniform), and BP is brevity penalty, calculated as: 

 

𝐵𝑃 = {
1 𝑖𝑓𝑐 > 𝑟

𝑒1−𝑟/𝑐 𝑖𝑓 𝑐 ≤ 𝑟
 (4) 
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Here, 𝑐 is the length of the candidate output, and 𝑟 is the length of the reference. 

 

BLEU is most effective at measuring surface-level fluency and phrase alignment, 

making it a good fit for formulaic text domains like public procurement. 

 

• ROUGE -L  (Recall-Oriented Understudy for Gisting Evaluation) focuses on recall 

by computing the longest common subsequence (LCS) between the reference and 

the generated text. Unlike BLEU, which emphasizes exact n-gram matches, 

ROUGE -L captures non-contiguous but ordered overlaps, making it more suitable 

for evaluating overall structural alignment. Formally, it is defined as: 

 

𝑅𝑂𝑈𝐺𝐸 − 𝐿 =
𝐿𝐶𝑆(𝑋,𝑌)

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (5) 

 

where LCS(𝑋,𝑌) is the longest subsequence in both sequences 𝑋 and 𝑌 [10]. 
 

• BERT Score evaluates semantic similarity between generated and reference texts 

using contextualized embeddings from a pre-trained BERT model. It measures how 

closely each token in the generated output aligns-embedding-wise-with its most 

similar token in the reference. Unlike BLEU and ROUGE, which rely on surface 

overlap, BERT Score enables soft alignment, rewarding outputs that preserve 

meaning even if exact wordings differ. 

 

𝐵𝐸𝑅𝑇𝑆𝑐𝑜𝑟𝑒 =
1

|𝑋|
∑ max

𝑦𝜖𝑌
cos(𝜙(𝑥), 𝜙(𝑦))𝑥𝜖𝑋  (6) 

 

where ϕ(⋅) is BERT-based contextual embedding function, 𝑋,𝑌 are token sets from candidate 

and reference texts, and cos(⋅,⋅) is cosine similarity [22]. This metric is particularly valuable 

in legal or regulatory text generation, where exact phrasal matching is less important than 

preserving meaning and logical form. 

 

6. Results 

6.1. Overview of Results 

To assess the contribution of each component in our hybrid symbolic-neural framework, 

we systematically compared four generation configurations. These setups were chosen to 

isolate the individual effects of symbolic prompting and decoding and evaluate their 

combined synergy. Each method was evaluated using the same model architecture 

(DistilGPT2) and tested on the domain-specific dataset of Polish public procurement texts. 

 

Let 𝑀 be the Markov model and 𝐺 be the base LLM (DistilGPT2). The configurations 

are defined as follows. 

 

We compared: 

• Vanilla Prompting. A standard few-shot prompting baseline. DistilGPT2 is 

conditioned with a manually selected domain-relevant prompt without any 

symbolic augmentation. This serves as a lower-bound baseline representing 

general-purpose usage of the model in the absence of domain steering. 

 

𝑉𝑎𝑛𝑖𝑙𝑎 𝑃𝑟𝑜𝑚𝑝𝑡𝑖𝑛𝑔 = 𝑃𝑟𝑜𝑚𝑝𝑡(𝐺) (7) 

 

• Markov few-shot prompting only. In this setup, the model is primed with few-shot 

examples automatically generated by sampling from the Markov model. These 

synthetic sequences mirror the domain’s structural patterns, allowing the model to 

internalize them at inference time. However, no symbolic control is applied during 
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decoding, allowing us to assess the effect of prompting alone [19]. 

 

𝐹𝑒𝑤 − 𝑆ℎ𝑜𝑡 𝑃𝑟𝑜𝑚𝑝𝑡𝑖𝑛𝑔 = 𝑃𝑟𝑜𝑚𝑝𝑡(𝐺, 𝑆𝑎𝑚𝑝𝑙𝑒(𝑀)) (8) 

 

• Markov decoding only. Here, no synthetic prompt examples are provided. Instead, 

the output logits of the model are dynamically adjusted during generation using 

transition probabilities from the Markov model. This method applies symbolic 

constraints in real-time, steering output token selection according to domain-

specific structural expectations [16]. 

 

𝑀𝑎𝑟𝑘𝑜𝑣 𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔 = 𝐷𝑒𝑐𝑜𝑑𝑒(𝐺, 𝐵𝑖𝑎𝑠(𝑀)) (9) 

 

• Full hybrid model (proposed). Our complete symbolic-neural integration strategy. 

The model is primed with synthetic Markov-generated examples, and its token-

level generation is simultaneously influenced by Markov-conditioned decoding. 

This setup combines initial structure-aligned conditioning with continuous, 

symbolic correction throughout the generation pipeline. 

 

𝐹𝑢𝑙𝑙 𝐻𝑦𝑏𝑟𝑖𝑑 = 𝑃𝑟𝑜𝑚𝑝𝑡(𝐺, 𝑆𝑎𝑚𝑝𝑙𝑒(𝑀)) + 𝐷𝑒𝑐𝑜𝑑𝑒(𝐺, 𝐵𝑖𝑎𝑠(𝑀)) (10) 

 

Each configuration explores a different intersection of symbolic control and neural 

generation. By keeping the base model 𝐺 fixed and modulating the symbolic interface via 

𝑀, we isolate the impact of prompt design, decoding intervention, and their joint effect on 

domain alignment [1], [4].  

Our hybrid framework outperformed all baseline configurations across BLEU, 

ROUGE-L, and BERTScore. Symbolic guidance via prompting and decoding significantly 

improved both surface-level fluency and semantic consistency relative to domain-specific 

references. 

 
Table 2. Automatic evaluation scores for each model variant. The hybrid approach outperforms all baselines 

across BLEU, ROUGE-L, and BERTScore metrics, confirming the effectiveness of dual symbolic guidance. 

Model Variant BLEU ROUGE-L BERTScore 

Vanilla Prompting 0.42 0.47 0.81 

Markov Prompting Only 0.48 0.53 0.84 

Markov Decoding Only 0.50 0.55 0.86 

Full Hybrid (Ours) 0.58 0.63 0.89 

 

The hybrid model achieved up to +15% improvement in BLEU/ROUGE over the 

baseline and an +8% increase in BERTScore, indicating better alignment with domain 

phrasing and meaning (Table 2.). 

 

6.2. Qualitative Observations 

Generated outputs from the hybrid model exhibited: 

• Canonical phrasing (e.g., “zgodnie z dokumentacją przetargową”), 

• Fewer grammatical anomalies, 

• Better clause structuring in legal-style sentences. 

These outputs adhered more consistently to formal norms, a key requirement in the 

regulatory and procurement domain. 

 

6.3. Ablation Insights 

Ablation experiments confirm the complementary effect of the two symbolic 

components: 

• Prompting only improved structural initialization and framing. 

• Decoding only reduced mid-sentence drift and reinforced token-level 
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regularity. 

• Combined, they yielded the strongest results, confirming the value of symbolic 

guidance across both input and output stages. 

Even in CPU-only settings, the symbolic components enabled strong domain control 

without any model fine-tuning. This underscores the viability of inference-only adaptation 

for formal, resource-constrained applications. 

 

7. Discussion & Limitations 

Our results show that even simple symbolic models—like 3-gram Markov chains—can 

substantially enhance the domain alignment of language model outputs. The proposed 

hybrid approach demonstrates that symbolic prompting and decoding can compensate for 

the lack of fine-tuning, especially in resource-constrained settings such as public-sector 

NLP or non-English domains. 

By capturing local syntactic regularities, the symbolic model helps the neural generator 

remain stylistically consistent with formal domain expectations. Crucially, the entire 

pipeline runs on CPU-only infrastructure with no model retraining, making it deployable 

in low-compute environments. 

However, our method has limitations. The 3-gram model captures only short-range 

dependencies and lacks global context or document-level structure. This restricts its ability 

to model complex legal logic, nested clauses, or discourse-level coherence. In some cases, 

it may also overfit common patterns, reducing lexical diversity. 

Future directions include integrating more expressive symbolic components, such as 

probabilistic context-free grammars (PCFGs) [20], constraint-based models, or discourse-

aware structures such as Rhetorical Structure Theory (RST) [13]. Adaptive symbolic 

weighting—where the influence of the prior shifts dynamically during generation—may 

further improve stylistic control without sacrificing fluency. 

 

8. Conclusions 

We introduced a lightweight hybrid framework for steering language model outputs using 

symbolic priors. By combining Markov-based prompting and decoding-time reweighting, 

our approach improves domain fidelity without retraining or additional model parameters. 

The system is deployable on CPU-only hardware and requires no annotated training 

data, making it suitable for low-resource domains like Polish public procurement. This 

work contributes to scalable, interpretable, and accessible NLP for formal and structured 

text generation, and offers a promising direction for symbolic-neural collaboration in 

domain adaptation. 
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