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Abstract

This contribution proposes an ensemble classification model which is based on neural networks
prediction models and well-known online incremental learning models. The considered neural
network models belong to different families, namely long-short term memory, deep feed forward
and convolutional neural networks. The incremental learning models considered are Passive
Aggressive, Bernoulli Naive Bayes and Stochastic Gradient Descent Classifiers. This paper
aims to develop a prediction model that reduces false positives (FP) while maintaining overall
model performance. Moreover, the stability of the model over time and its ability to correctly
classify phishing links, even if the concept shift occur, are under considerations. The ensemble
model shows promising results, demonstrating its superiority over base models. Some proposed
models significantly outperform some base models according to statistical tests.

Keywords: neural networks, online learning, aggregation functions, online incremental learn-
ing, ensemble learning

1. Introduction

Phishing is a fraud attempt where cybercriminals impersonate trusted entities to obtain sensitive
user information. It remains a common tactic among cybercriminals, requiring continuous ef-
forts for successful detection [6]. Attackers often adapt their actions to avoid detection, making
traditional batch learning approach may be insufficient to this problem. A possible solution is to
employ an online incremental learning approach [3, 4], [6]. A machine learning-based phishing
detection tool can be customized for different users. In the context of commercial email sender
company, it’s crucial to use this tool effectively without sending phishing messages. Experts
must verify suspected emails. Senders may claim compensation for emails wrongly blocked.
The detector should minimize false positives (FPs), as these can be expensive to deal with.
This contribution aims to reduce FP while maintaining overall model performance. Another
studied issue is the stability of the model over time, and especially its ability to correctly classify
phishing links (even if the possible concept drift occurs). This problem was previously studied
in [3] and [4]. The models denoted as w1-ws in Section 2 were originally used in [6] and later
adopted also in [3] and [4]. In [3] and [4] the proposed model was an ensemble model. In
[3] only the well-known aggregations such as min, max, and the arithmetic mean were used to
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combine the predictions of the individual models, while in [4] various families of aggregation
functions and uninorms was additionally utilized. The neural networks architectures used in this
contribution (denoted as f1, fo, [, ¢; and c3) were originally proposed in [4], where they were
considered as State of The Art (SOTA) models, but where not a part of the ensemble. In both [3]
and [4] there was applied a threshold moving strategy, which main goal was to tune the model
to obtain desired minimal TPR. Contrary in this contribution the models are not tuned in this
fashion.

The main novelty of this paper is to use an ensemble model based on both online incremental
learning models and neural network models. Moreover, other families of aggregation functions
are applied and the classification algorithm is modified (as stated before the models are not tuned
to obtain the desired minimal TPR). Finally, in this contribution, the stability of the considered
model with special attention to the concept drift problem is studied.

2. Methodology

Passive aggressive classifier (denoted as wy ), online Bernoulli Naive Bayes (denoted as w») and
stochastic gradient descent classifier (denoted as ws) were considered as base models and were
previously used in [3, 4], [6]. They are both popular online learning models and a popular choice
for phishing link detection [4]. For wi-ws scikit-learn implementations were applied with the
default values of all hyperparameters.

The neural networks utilized in this study represent a popular choice in the domain of the
phishing link detection [4]. They came from different families: LSTM (Long-Short Term Mem-
ory), deep feed forward neural networks (DFFNN) and CNN (Convolutional Neural Network).
The f1 is a DFFNN, which contains one single hidden layer, while f5 is a DFFNN, which con-
tains 3 hidden layers and one dropout layer. The c; is a CNN, which uses kernel of size 3 to
generate 32 channels. The cy is a CNN, which uses kernel of size 3x3 to generate 8 channels.
Both CNNs applied GELU as an activation function and contain one additional feed forward
layer. The ! is a LSTM, which has 20 hidden dimensions. The exact architectures of these
networks are the same as in [4], where also the more detailed description about them can be
found.

The proposed ensemble model consist of individual models, which are the nonempty subsets
of the set { w1, we, w3, f1, f2, [, c1, co} which are independently trained and their predictions

are combined using aggregation functions from the families described in [1]: Az, Apr, Aga,
Agm Ahm A—O.B AO.5 A1.5 A—1.5 A3 A—3 A_O'5 AO.5 AQ A_2 AO'5 A70'5 A71.5
D) ) exr ’

péu s Llpws Fpws Fpw 0 Hpwr Fpw: ex > “tex® “texr > “Hm> “Hm > “lm
1.5 43 - 2 o 0 0.05 0.01 1
Ay Aps A Amas Aots Ay, and convex combinations Ay, s Agr s Agrmns Aarmns
: : : : e total number of combinations be-
A005 0.1 Al A005 01 AL The total ber of combinations b

gm,mn> ‘tgmmn> ‘igmmn> ‘ipromns ‘iprymns Liprymn
tween base models and aggregations gives the total number of 7 904 examined proposed models.
Because of the fact, that online learning paradigm was adopted, the proposed ensemble model
after trained on initial data is later additionally trained on consequent data chunks. The base
models also used this learning paradigm. The details of proposed ensemble model is visualized
in Fig. 1.

The FreshMail dataset used in this research consists of 19 features (columns) and 2 564 973
records collected over a time span of 120 days and was previously used in papers [3, 4], where
more details about it can be found. To simulate a real-time scenario, the dataset is divided into
12 sequential chunks, each representing 10 consecutive days of observations. This temporal
division allows the model to mimic a streaming environment in which it receives and processes
new data at regular intervals. All available features were used in the training phase.

As stated previously in the introduction, attackers usually modify their actions and therefore
the characteristics of the data is changing over time. As suggested in [5] the Population Stabil-
ity Index (PSI) was applied as a measure of detecting drifts (shifts) in data. PSI may be defined
as a variant of the Kullback-Leibler (KL) divergence measure (relative entropy). Unlike KL
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Training data

In each defined time window (e.g., a 10-day period), 60% of
the collected data is selected and utilized for updating the
model.

J

Test data

Test data consist of samples from the subsequent time I
period. Each model is evaluated using the same set of test
instances.

A set of N different models is employed to estimate the
confidence that a given email is a phishing attempt.

k5

Aggregation

The output confidences from the individual base models are
combined using aggregation functions. An aggregated score
below 0.5 leads to a classification of the email as benign,
whereas a score above 0.5 results in a phishing classification.

Fig. 1. Proposed model working scheme

divergence PSI is symmetrical and therefore is a distance measure. PSI has a widely accepted
rule of thumb, that PST < 0.1 is considered no significant drift, 0.1 < PSI < 0.2 is consid-
ered a substantial divergence, and PSI > 0.2 is considered as a significant shift [5]. However,
this rule is non-strict and should be understood as a guideline. It is worth noting, that concept
drift is a broad term. The main categories are [7]: drift subject (class drift, covariate drift);
frequency (abrupt drift, extended drift); reoccurrence, magnitude and transition (gradual, incre-
mental drift). The PSI is a quantitative measure best suited to detecting covariate drift (when the
distribution of non-class attributes changes over time). Later in the paper, the concept shift will
be understood as a covariate drift.

3. Results

Among models with the lowest reported mean FP, we chose their representatives: A; 3wy, wo,
w3, ¢1,¢2, f1, f2,1) denoted as pmy and A, (w1, w2, c1, 2, fi1, f2,1) denoted as pmo. The best
ensemble of only neural networks is A, (c1, c2, f1, f2,1) denoted as pm3. The best ensembles
of only w; — ws are A;u% (w1, wa, w3) labelled pmy and A, (w1, w2, w3) labelled pmg. The
Agi(wa, 1, f1, f2,1) denoted as pmy is the model with the highest observed ROC AUC.

As shown in Table 1, the mean FP for the best proposed models is between 111 and 115,
while the best neural network c¢; has a score of 438 (about 4 times greater). c; and f; are
comparable, while [ and f5 are the second best. ¢s is close to ws and is clearly the weakest
neural network model. The weak performance of w2 could be due to its probabilistic nature and
its susceptibility to strong concept shift. Every base model generates some FPs on every fold,
while the best proposed models generate lower FPs (even 0). Notably, over 3 300 aggregation-
based ensembles are better than the best neural network c;.

For folds 4 and 10, the number of false positives (FPs) is growing rapidly compared to
previous folds. On a smaller scale, the growth of FPs is between folds 0 and 1, and folds 2 and
3. This suggests two important concept shifts appear in the data. To verify this, the PSI was
calculated between every train and test fold using 10 bins. In [2] there are listed real features
names with their corresponding abbreviations. Nine features (denoted as Fy-Fg, Fs, Fy) have
numerous PSI values greater than 0.2. The remaining 10 features do not show any concept shift,
or it is not evident (the PSI is greater than 0.1 sometimes). We chose F%, Fio and F}; as their
representatives. In [2] the PSI values are presented for these selected features.
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The amount of false phishing link detections is also determined by the amount of clear
links in each fold itself (if this number is greater simply the number of false detections could
be greater too). The count of clear occurrences in every test fold is listed in [2]. Fold 4 has
especially many FPs for all models but its count of clear links is similar to fold 5 and is lower
than fold 6 or 7, where FPs are generally less numerous. Fold 10 is one of the smallest, while
reported FPs for some models are very high. Therefore the occurrence of concept drift is more
probably the reason for the drop of classification quality and not the characteristic of the dataset
itself.

It is evident that train fold O is significantly different than every test folds (even test fold 0).
The difference between train and test fold 0 explains why base models are generating even
hundreds or thousands of FPs on it. Interestingly, some proposed models seem to be more prone
to this concept drift. In test fold 1 pm; and pm,4 have more FPs, despite training on similar
train fold 1. The quality of the other models is generally improving, but the base models are
worse than the best proposed models. The test fold 4 differs very significantly from train fold 0
and significantly on some features from folds 1-3. This leads to an outcome that some concept
drift occurs on test fold 4 and all models trained on folds 0-3 drop their quality. The test fold 4,
according to PSI is not dissimilar from train folds 4, 5, 6 and is only a little different than train
folds 7 and 8. With train fold 9 the difference is very significant on 3 features. In other words,
it may be assumed that folds 4—8 represent a similar pattern and that all models have a tendency
to adapt to it and improve their quality over time, reaching a peak at fold 8. For fold 9 the base
models rapidly lose quality, while the best proposed models maintain relatively high quality.
Test fold 10 differs significantly from almost all train folds, particularly its predecessors, folds
8 and 9. Even train fold 10 differs from test fold 10. For fold 10 the growth of the FPs is the
highest, but the best proposed models are more prone to this.

To verify if the observed differences in quality are significant we applied statistical tests. We
tested only groups from Table 1. As FPs values are not normally distributed, the Kruskall-Wallis
test was used to check for differences between groups. This test confirmed significant differ-
ences (p-value was 5.0 - 10™7), so the post-hoc Dunn’s test with Holm-Bonferroni corrections
was used to identify which groups were significantly different. Between any pair of the best
proposed models Dunn’s test shows no difference. pm is statistically different from w;-ws and
Co. wo is worse than pmy-pmy. c1, f1, fo, and [ are not significantly different from any proposed
model. The p-values are presented in [2]. We used an alpha level of 0.05 for all statistical tests.

To better understand the overall behavior of the models, the mean ROC AUC was calculated.
The base models have values of approximately 0.99, with w3 being an exception at approx. 0.95.
pmy and pmy have approx. 0.74, pmg has approx. 0.95, while pmso and pms have approx 0.99
and pms > 0.999.

4. Conclusions

pmy has the fewest reported FPs with relatively high ROC AUC. It is the best recommended
setup. pm; has the fewest generated FPs but the lowest ROC AUC. At least 5 models in the
ensemble are requisite to attain the highest quality. The best ensemble models combine w; —
wo with neural networks (compare pmsg and pmg3). A, seems to be the optimal aggregation.
A, and A, decrease FPs while lowering the overall quality. A,; increases ROC AUC, while
increasing the number of FPs.

The ensemble of neural networks first introduced in [4] exceeds their individual classifica-
tion quality. The same happens in the case of the w;-w3. The aspect of data changing over time
was better studied than in the [3] and [4]. With the usage of the PSI measure the concept drifts
was observed with high probability, and the aspect of model durability to this fact was examined.
The main achievement of the proposed model is that it generates a significantly lower number
of FPs than base models (considered as SOTA in this area). Moreover, when some concept
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Table 1. The best ensemble models results and the base models FP

Fold
abb. | 0 1 2 3 4 5 6 7 8 9 10 Mean
pmy | O 149 0 151 636 82 121 84 0 0 0 111
pma | 87 17 78 78 239 46 61 48 3 99 512 115
pms | 123 71 105 91 568 79 143 68 19 104 827 200

pmy | O 497 0 488 1679 | 2189 | 352 360 0 0 0 506
pms | 580 | 244 324 | 241 892 2278 | 357 207 139 565 1972 709
pme | 639 188 512 | 467 1656 | 2185 | 145 359 35 792 1593 779

440 195 276 260 904 344 315 192 104 | 493 1296 | 438
439 199 205 195 787 291 310 159 100 | 456 1768 | 446
824 307 398 304 792 2294 | 376 | 209 157 579 2147 762
824 | 282 336 251 1211 | 2314 | 376 203 132 304 2766 818
1838 | 661 2413 | 817 2504 | 2190 | 374 366 329 917 1671 1280
556 617 513 750 1485 | 3974 | 708 593 320 1074 | 5719 1483
1892 | 196 677 1415 | 3993 | 4098 | 150 3764 | 35 1284 | 30138 | 4331
821 2454 | 2186 | 2780 | 3502 | 8373 | 5810 | 5673 | 3649 | 7273 | 26501 | 6275

drift happens, it is more stable and more prone to rapid increase of FPs than SOTA. It was also
shown that the proposed models maintain good overall quality (comparable ROC AUC to the
base models).
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