
33RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2025 BELGRADE, SERBIA)

Automation of Selected Processes in IT Project Management with
Natural Language Processing

Aneta Poniszewska-Maranda
Institute of Information Technology/Lodz University of Technology
Lodz, Poland aneta.poniszewska-maranda@p.lodz.pl

Piotr Wawrzynkiewicz
Institute of Information Technology/Lodz University of Technology
Lodz, Poland piotrwawrzynkiewicz00@gmail.com

Joanna Ochelska-Mierzejewska
Institute of Information Technology/Lodz University of Technology
Lodz, Poland joanna.ochelska-mierzejewska@p.lodz.pl

Abstract

The paper presents the use of deep learning models to support the automation of management in
IT projects on the example of task assignment. Managing IT projects is a complex process that
requires the coordination of multiple tasks, resources, and individuals involved in the project.
For this purpose, datasets were created to simulate various project environments, and models
based on the GraphSAGE architecture were trained, enabling efficient modeling of relationships
between tasks and programmers. It was observed that improving data quality could significantly
enhance the performance of the models, suggesting the potential for further development and
improvements in this area.

Keywords: Process automation, project management, Natural language processing, deep learn-
ing, graph neural networks.

1. Introduction
IT project management is a complex process that requires coordination of many tasks, re-
sources and people involved. Contemporary challenges resulting from the growing complexity
of projects, dynamically changing requirements and the need to quickly adapt to new technolo-
gies pose increasingly complex tasks for project managers. The simultaneous need to effectively
manage teams and resources with limited budgets and lead times leads to the development of
tools and methods that allow for more effective planning, monitoring and implementation of
projects. One of the key areas that is gaining importance in this field is the automation of project
management processes using artificial intelligence techniques, in particular deep learning meth-
ods. The implementation of modern algorithms allows for better human resource management,
risk analysis and optimization of project processes.

Various methodologies supporting project implementation processes have been used in IT
project management for years. The most commonly used include the classic waterfall approach
and agile methodologies, the most widely used of which is SCRUM. Modern IT project man-
agement is often supported by various tools that facilitate organization, communication, and
progress monitoring. Tools such as Jira, GitHub, and Microsoft Teams are an integral part of
modern project management practices [22]. The use of these project management tools and
methods allows for effective management of IT projects, process optimization and increased
efficiency of project teams. However, although these tools offer significant support in automat-
ing various aspects of work, full automation of task assignment and project management still



PONISZEWSKA-MARANDA ET AL. AUTOMATION OF SELECTED PROCESSES IN IT . . .

requires active supervision and intervention from project managers who must actively track the
competences of people in a team that often changes dynamically [14].

The paper presents an analysis of various deep learning models (e.g. neural networks, trans-
formers, graph networks) supporting selected IT project management processes. After analyzing
current solutions, the best method for use in the work area was selected and a system for auto-
matic task assignment to programmers based on their competences was prepared in the context
of extracting tags/keywords from task descriptions and programmers’ CVs. An appropriate data
set was selected on which the tested model was tested and an analysis of the implemented model
was made on the selected data set and the effectiveness of different models on the test set was
compared.

2. NLP methods for keyword extraction in management tasks
The use of natural language processing (NLP) methods in project management enables auto-
matic analysis and extraction of key information, which significantly supports the processes of
task allocation and resource management in dynamic project environments. Managing software
development teams is a challenging task, especially in the context of assigning tasks and man-
aging dynamic changes in the team composition. One of the main problems is the appropriate
matching of tasks to the competences of individual programmers. Managers use various meth-
ods and tools to effectively assign tasks and monitor progress. One of such tools is RACI matrix
(Responsible, Accountable, Consulted, Informed) [5], MoSCoW method (Must have, Should
have, Could have, Won’t have) [3], Skill-based Task Allocation method [7], [11]. Although
these methods and tools significantly support the task assignment process, full automation of
this process still faces challenges. It requires constant adaptation to changing conditions and
team competences. Machine learning uses various algorithms to analyze data and build models
that can predict outcomes or classify data, such as decision trees [17], linear regression [16],
Support Vector Machines (SVM) [4], [8], K-means algorithm [20], neural networks, and deep
networks such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN),
Long Short-Term Memory (LSTM), and transformers [19], [21], [23]. In recent years, trans-
formers have become a key element in the field of NLP. Models based on transformer archi-
tecture, such as BERT (Bidirectional Encoder Representations from Transformers) and GPT
(Generative Pre-trained Transformer), have revolutionized the way natural language processing
is done through Attention Mechanism [26].

Graph Neural Networks (GNNs) are another advanced technique in the field of deep learn-
ing that has gained importance in processing structured data. GNNs are designed to work with
data that can be represented as graphs, where nodes represent entities and edges represent re-
lationships between them. As a tool for analyzing natural language, GNNs can be used to
analyze relationships between text entities, such as identifying words, or extracting information
from documents where the relationships between different pieces of text are crucial [27, 28].
GraphSAGE (Graph Sample and Aggregate) is an innovative graph neural network architec-
ture designed for scalability and generalization to new, previously unseen nodes. In traditional
GNNs such as GCN (Graph Convolutional Networks), the full adjacency matrix must be read
into memory, which can be problematic for very large graphs. GraphSAGE addresses this prob-
lem by introducing a sampling approach that randomly selects subsets of neighbors for each
node during training. This allows the model to efficiently process huge graphs by processing
only a fraction of the data at a time [6], [15].

3. Related works
The following two main research questions were defined in order to specify the existing works
in the mentioned area: (1) RQ1: "To what extent does the use of graph neural networks (GNN)



ISD2025 BELGRADE, SERBIA

in IT project management systems improve the efficiency of decision-making processes and
the optimization of resource allocation compared to traditional methods and algorithms?". (2)
RQ2: "How effective is the integration of natural language processing (NLP) and graph neu-
ral networks (GNN) techniques in the automation and improvement of IT project management
processes, taking into account the use of TF-IDF, Word2Vec and FastText algorithms?".

The use of GNNs in text processing allows for effective modeling of relationships between
words and sentences, which significantly improves text classification results. The works [24],
[29, 30] emphasize the potential of GNNs in solving complex problems, especially in document
analysis and text structure tasks. The authors of [24] analyze the application of graph neural
networks (GNN) in communication networks, especially emphasizing their ability to generate
precise data-driven models, which is crucial in the optimization and management of modern
networks. The paper [29] presents a review that includes methods, architectures and applica-
tions of graph neural networks. The authors discuss in detail the guidelines for building GNNs,
analyzing their potential in various fields, from pattern recognition to processing graphical data.

The authors of [30] present a text classification method using graph neural networks (GNN),
where each document is represented as an individual graph. The main challenge that the study
addresses is the effective representation of the document structure in the form of a graph, which
allows for better capturing the complexity of text data and improving the classification results.
The use of GNNs allows for the analysis of each document in its original context, which dis-
tinguishes this method from classical approaches to text classification. The work [29] presents
various ways of applying graph neural networks in NLP tasks. The article addresses the prob-
lems related to automatic graph creation from text data and discusses the challenges facing these
models, such as efficiency and interpretability. The authors also analyze current trends and fu-
ture research directions, emphasizing the potential of GNNs in solving NLP problems. The
study of word embeddings in text using methods such as Word2Vec and FastText [1], [25] has
proven to be extremely effective in text analysis, especially in the analysis of specialized lan-
guage. Thanks to them, it is possible to model semantic relations between words more precisely,
which leads to better results in the tasks of extracting key information from text. The TF-IDF
algorithm is one of the basic tools in text analysis, enabling efficient identification of the most
important words in documents [13], [18].

Graph networks enable processing of more information than traditional methods, because
they can capture dependencies between data elements with more complex structure. In the task
of managing IT projects, this allows for a better understanding of the dependencies between
tasks, resources and team members, which supports task allocation and progress monitoring.

4. Problem research solution
This section discusses the process of evaluating the effectiveness of graph neural networks in
assigning new problems in a software project to programmers who have the appropriate com-
petences to deal with them. It describes the data used to train the deep learning model, the
architecture of neural network, and the evaluation methods.

Dataset description and its preprocessing. The bigcode/the-stack-github-issues dataset,
available on the Hugging Face platform [9], was used in this work. It is a rich collection of
issue conversations and pull requests from the GitHub platform. It includes events such as
opening issues, comments, and closing issues, and also contains information about usernames,
text content, actions, and identifiers. The dataset contains 30.9 million rows and its total size is
54 GB. The data is mainly available in English [2]. This dataset was chosen mainly because of
its size and the wide range of domains from which the records come. It contains issues related
to JavaScript libraries as well as low-level drivers written in C. The bigcode/the-stack-github-
issues dataset has been processed: automated texts have been removed, bot comments have been
filtered, high-quality conversations have been ensured, and personal data has been anonymized.



PONISZEWSKA-MARANDA ET AL. AUTOMATION OF SELECTED PROCESSES IN IT . . .

The most important column in this data set is the content column, which contains the content
of the issue along with the entire conversation associated with it, saved in markdown format
(Fig. 1). To divide the text into content and comments, the issue has been separated by tags, e.g.
<issue_comment>, which indicates where a new comment begins. This gives many possibilities
for further processing of this collection.

Fig. 1. Example content column and repo column element in bigcode/the-stack-githubissues.

Due to the size of the set (54GB), only a fragment of this set (10GB) was used in the
experiments, from which 4 data sets were then generated simulating different test cases differing
in size and data diversity. The data sets were created based on the repo column and each of them
is built from several to a dozen or so repositories of different sizes (Fig. 1). Unfortunately, the
bigcode/the-stack-github-issues collection does not provide information on who solved a given
issue from a repository, so some simplification was necessary. In this work, it was assumed
that each repository containing issues was created by a single team/person. This is a necessary
assumption so that the datasets can be used to train a model that assigns tasks to developers
based on their competencies.

Filtering a data set. After loading the entire dataset (10GB), the first stage of filtration is to
find repositories that meet the conditions of the number of issues contained in the repository. The
the-stack-github-issues dataset is mainly composed of very small repositories containing from
1 to 10 issues, on which it would be difficult to train the model due to the lack of characteristic
features. Therefore, only repositories meeting specific parameters of quantity were used to
construct datasets simulating different test cases, e.g. the number of issues from 128 to 256.
Each test set differs in composition and number of repositories, which allows to test the model
in different situations.

The next stage was transformations on the already limited test set, which contains up to 32
repositories depending on the scenario. Unnecessary columns are removed from the set: issue
id, issue number, pull request, events, text size, usernames. These fields do not contain important
information in the context of analyzing competencies needed to complete the problem (Fig. 2).

After cleaning and extracting the relevant content, the data contains only the most important
information: the name of the repository, the processed content, and the extracted code. This data
structure allows for more efficient and targeted processing in the subsequent stages of analysis.

Keyword extraction. Extracting keywords from the processed text is a key step in the
analysis, which allows for the identification of the most important concepts and topics in the
dataset. This process begins with converting the text to lowercase, which aims to avoid the



ISD2025 BELGRADE, SERBIA

Fig. 2. Initial structure of the dataset after removing unnecessary columns.

repetition of tokens with the same meaning that could occur in different spellings, e.g. in the
case of proper names. Unifying the text to lowercase allows for a more consistent analysis,
reducing the risk of treating the same word written in different letters as different tokens.

Next, linguistic analysis is performed, which consists of extracting nouns and proper names.
These nouns are important because they most often represent important concepts and topics in
the analyzed text. To further unify the dataset, all extracted nouns are transformed to the singular
form using an appropriate linguistic tool, which unifies concepts that are plural and singular.

The next step is to calculate the centroid, which is the average vector of all words, which
represents the "center" of the meaning of the entire set of words. Then, the cosine similarity be-
tween the vector of each word and the centroid is calculated. Based on the calculated similarity
values, the words are sorted in descending order. The most important words, with the highest
similarity to the centroid, are extracted as keywords. Thanks to this process, it is possible to
effectively identify the main topics and concepts that dominate the analyzed content of problem.
Result of this transformation is dataset containing content, code, keywords (Fig. 3).

Fig. 3. Dataset structure after keyword extraction.

Programming language detection. If there is a code fragment in the content column, it is
extracted and analyzed separately from the rest of the problem content. If the code and content
were analyzed using a FastText-based method, the specific code syntax would have a very large



PONISZEWSKA-MARANDA ET AL. AUTOMATION OF SELECTED PROCESSES IN IT . . .

impact on the calculation of the text centroid. Separating these two analyses allows for more
reliable results.

The open-source Guesslang tool was used to analyze the text. Guesslang uses advanced ma-
chine learning techniques and TensorFlow tools to build, train, and evaluate a text classification
model that recognizes programming languages [12].

One of the problems with this solution is the length of the code in the analyzed problems. In
many languages, the semantics can be very similar, e.g. in languages related to C. This results
in incorrect classifications of short code fragments that constitute a large part of the set. Quite
often, only a code fragment is pasted into the problem description, after which it is not easy
to determine what programming languages it is. In such situations, the result of programming
language detection is not taken into account in subsequent stages of problem analysis (Fig. 4).

Fig. 4. Dataset structure after programming language detection.

Selection of the most relevant keywords. Keyword extraction aims to find words that best
define the problem. Due to the specific language in which problem descriptions are written,
many extracted keywords do not carry information about the technology or the archetype of
the problem. For this purpose, an alternative approach was developed, which is based on the
TF-IDF method. The TF-IDF value is calculated as the product of two factors: the frequency of
a term in a document (TF) and the inverse frequency of documents in which the term appears
(IDF) [10].

Using this method, we can automatically assess the importance of individual keywords in
the context of the entire dataset. Terms that appear frequently in few documents receive higher
TF-IDF values, which allows them to be identified as more relevant and domain-specific. In
this way, it is possible to filter keywords effectively, without the need for manual supervision,
favoring terms that relate to IT problems. These relevant keywords will be the basis for the
construction of a problem graph, in which connections between nodes will occur when problems
share the same relevant keyword (class).

Graph creation. The next stage of data set transformation is the construction of the graph
itself, on which the model will be trained. The most important assumption of graph construction
is that the edges of the graph are created between nodes that have the same important keywords.
The graph nodes represent individual problems from which keywords were extracted. Each node
contains a full set of keywords, both important and those of lesser importance, which allows for
maintaining the full context of each problem description. The edges, on the other hand, are
created solely on the basis of important keywords, which connect nodes representing problems
with common, key features such as programming language, problem archetype or technology
used.

After the complete transformation of the datasets into graphs, the proprietary model based



ISD2025 BELGRADE, SERBIA

on the GraphSAGE architecture was trained on each of the training sets to learn an efficient
representation of the nodes based on their local neighborhoods. During the training process,
the model iteratively updates its weights to improve its ability to classify nodes based on their
attributes and graph structure. The ultimate goal is to obtain a model that can accurately classify
unknown nodes based on the information available in the graph, using both the features of the
nodes and their connections to other nodes.

The architecture of graph neural network used in our work was based on GraphSAGE
(Graph Sample and Aggregation) model. This model was chosen for its ability to scale to large
graphs and efficiently learn node representations. GraphSAGE is particularly effective in tasks
where it is critical to predict properties for nodes that have not been seen before by the model,
which is common in real-world applications. The proposed model based on the GraphSAGE
architecture, has three convolutional layers (SAGEConv) as (Fig. 5):

1. The first layer takes as input vectors representing keywords (x) and graph edge indexes
(edge_index). This layer uses 64 dimensions of embedding vectors that transform input
features by aggregating information from neighboring nodes. This allows the model to
capture the local context of each node.

2. The second convolutional layer consists of 128 dimensions of embedding vectors, which
allows the model to capture more complex patterns in the data.

3. The third layer, acting as the output, transforms the data to a dimension corresponding to
the number of classes predicted by the model.

Each convolution operation is supported by a normalization layer (BatchNorm), and the
results from the convolutional layers are activated using the ReLU (Rectified Linear Unit) func-
tion. The ReLU function introduces nonlinearity to the model, which is crucial for its ability
to model complex dependencies in the data. Batch normalization helps to speed up the learn-
ing process of the network and stabilizes its course by reducing the problem of changing input
distributions, known as internal covariate shift.

Finally, after passing through successive convolutional layers, the model generates output
representations of the nodes, which are then processed by the log_softmax function. This func-
tion transforms the resulting vectors into probabilities of the nodes belonging to the classes,
which is necessary for classifying the nodes in the graph. The model optimization process is
carried out using the AdamW (Adam with Weight Decay) optimizer, which was chosen for its
effectiveness in training deep neural networks. In this case, a learning rate of 0.005 and weight
decay factor of 0.001 were used, which helps control overfitting of the model to the training
data. Additionally, a learning rate decay schedule (ReduceLROnPlateau) was used, which al-
lows automatic adjustment of the learning rate in response to a plateau in the improvement of
model results.

Graph neural network training. Graph neural network training enables the GraphSAGE
model to efficiently learn the representation of nodes in the graph. This process starts with
dividing the data into training, validation, and test sets, which allows the model’s performance
to be assessed at different stages of training. The data is divided into these three sets randomly,
with 80% of the data allocated to the training set and remaining 20% divided equally between
validation and testing. Each epoch of the GraphSAGE model training consists of several steps.

5. Analysis of results
Model accuracy is one of the most important metrics for assessing its effectiveness in assigning
problems to developers. In the context of this study, accuracy is defined as the ratio of the num-
ber of correctly assigned problems to the total number of test cases. To increase the precision of
the model, different optimization approaches were used, including the selection of appropriate



PONISZEWSKA-MARANDA ET AL. AUTOMATION OF SELECTED PROCESSES IN IT . . .

Fig. 5. Architecture of proposed model based on GraphSAGE.

cost functions and advanced optimization algorithms. The experiment included two different
methods for assessing accuracy. The first is traditional approach, in which accuracy is measured
by directly assigning a problem to 1 person. The 2nd approach takes into account the margin of
error, assuming that the model works correctly if the person selected by the model is among the
three highest-rated candidates for a given problem. This is possible thanks to the use of softmax
function, that returns percentage probability of assigning a problem to individual developers.

The experiment created four datasets, differing in the structure and content of the data they
contained. The repositories included in these datasets were randomly selected, with the main
selection criterion being the number of issues they contained. This selection method ensures
that the repositories are diverse in terms of their scale and allows for capturing the diversity of
issues that development teams may encounter. The classification of repositories by size was
performed as follows: (1) Large repository: from 1024 to 2048 issues; (2) Medium repository:
from 512 to 1024 issues; (3) Small repository: from 256 to 512 issues.

The random selection of repositories with different numbers of issues allows for maintain-
ing diversity in key areas, such as programming languages, technologies used in the repositories,
and types and complexity of issues. This allows for more representative results that will be ap-
plicable to a wide range of real-world development scenarios. Additionally, important keywords
were extracted for each set. On these sets, 4 original models were tested (one model for each
set) based on the GraphSAGE architecture described in the previous section.

The Z1 dataset is designed to simulate a team of about 10 developers. They have 3 small
projects and 2 medium-sized projects, each of which is a different technology. This dataset
is particularly diverse in terms of the technologies used and the types of problems, which
allows for thorough testing of the model in a diverse environment. The list of repositories
used to create this dataset includes: department-of-veterans-affairs/vets-website (1023 prob-
lems), pixijs/pixi.js (1016 problems), wasmerio/wasmer (256), airbnb/react-dates (242), Type-
Strong/typedoc (225). Keywords for Z1 set: sql, information, yaml, text, team, link, typescript,
javascript, update, testing, groovy, user, page, version, behavior, pixi, add, gov, bug, definition,
documentation, new, texture, acceptance, typedoc, batchfile, pii, sprite, va, department.

The Z2 collection represents a more diverse environment, where teams work on projects of
varying sizes, with a predominance of medium to large projects. It contains a variety of projects
that allow testing the model in conditions requiring handling large amounts of data and complex
problems. The list of repositories used to create this collection includes: prestodb/presto (1356
problems), ValveSoftware/Proton (877 problems), Microsoft/vcpkg (755), chapmanb/bcbio-nextgen
(242), pytorch/audio (207), opensearch-project/OpenSearch-Dashboards (154), ruma/ruma (129),



ISD2025 BELGRADE, SERBIA

peeringdb/peeringdb (128). Keywords for the Z2 set are: proton, driver, com, appid, vcpkg, ver-
sion, log, release, shell, information, presto, link, groovy, update, steam, csv, markdown, report,
compatibility, yaml, cmake, sql, build, prestodb, support, java, install, query, add, gist, makefile,
batchfile, game.

The Z3 dataset represents a complex environment dominated by large projects with many
problems. This dataset is ideal for testing the model in high-scale settings where the diversity of
problems and technologies poses challenges to project management. The list of repositories used
to create this collection includes: facebook/jest (1845 problems), prestodb/presto (1356 prob-
lems), ValveSoftware/Proton (877), gohugoio/hugo (866), Microsoft/vcpkg (755), deeplearn-
ing4j/deeplearning4j (754), wenzhixin/bootstrap-table (722), google/site-kit-wp (684), commons-
app/apps-android-commons (610), mdn/sprints (604), pydanny/cookiecutter-django (242), redux-
saga/redux-saga (237), tilt-dev/tilt (225), magda-io/magda (222), StylishThemes/GitHub-Dark
(207), enactjs/enact (204), agershun/alasql (177), slackapi/node-slack-sdk (172), derekparker/delve
(171), apache/tinkerpop (160), WebAssembly/design (154), linvi/tweetinvi (141), Simulated-
GREG/ (139), scylladb/scylla-manager (129), sphinx-gallery/sphinx-gallery (128), actor-frame/
actor-framework (128), Keywords for the Z3 set are: report, feature, update, dockerfile, mark-
down, sql, com, steam, groovy, javascript, pull, table, go, api, kotlin, add, presto, yaml, html,
org, batchfile, typescript, run, version, information, jest, using, request, game, makefile, csv,
coffeescript, support, bug, ruby, shell, css, page, new, proton, cmake, problem.

The last test set of Z4, here called the "Balanced Set", is used as a tool to analyze po-
tential model overfitting. The projects in this set have a very similar number of 46 prob-
lems, which allows us to see how the model performs under conditions where the size of the
projects is the same. This allows us to determine whether the model overfits the data. The
list of repositories used to create this set includes: udacity/create-your-own-adventure (380
problems), openMSX/openMSX (367 problems), google/filament (337), nodejs/node-gyp (334),
PHPOffice/PhpSpreadsheet (297), GoogleChrome/workbox (294), getferdi/ferdi (275), open-
targets/platform (264)). Keywords for the Z4 set are: create, groovy, reviewable, filament,
javascript, story, commit, npm, bug, request, yaml, com, io, md, workbox, phpspreadsheet,
version, err, gyp, behavior, review, node, build, src, ferdi, batchfile, add, adventure, php.

The entire implementation of the task allocation automation solution was done in Python,
using version 3.10. For efficient data processing, programs were run in an environment with
access to GPU, which significantly accelerated the graph model training. The pip tool was used
to manage libraries and dependencies, and the project was developed in a virtual environment.

The main way of evaluating the models was to analyze the accuracy measures such as F1
Score, precision (Precision) and sensitivity (Recall). Below are presented the results obtained
for the models trained on different data sets: small company (set Z1), medium company (set
Z2), large company (set Z3) and sustainable company (set Z4). These results allow to evaluate
the effectiveness of the proprietary models based on the GraphSAGE architecture in different
contexts and with different data complexity. The proposed model, based on the GraphSAGE
architecture accordingly achieved the results presented in table 1: M1 trained on a dataset of
small company (set Z1), M2 trained on a dataset of medium-sized company (set Z2), M3 trained
on a dataset of large company (set Z3), M4 trained on a dataset of company with repositories
balanced in the number of problems (set Z4).

Table 1. Evaluation results of models M1, M2, M3 and M4.

M1 M2 M3 M4–Exact M4–Top3
F1 Score 0.6313 0.5561 0.3448 0.5172 0.7668
Precision 0.6358 0.5712 0.3379 0.5356 0.7810

Recall 0.6269 0.5424 0.3519 0.5000 0.7810



PONISZEWSKA-MARANDA ET AL. AUTOMATION OF SELECTED PROCESSES IN IT . . .

The results for the Z1 data set seem promising, the M1 model obtained almost 64% accuracy
for the test data and learned 80 epochs. Around the 30th epoch, the model achieved the best
results, which later decreased. The model strongly favors the first person (we assume that each
repository was handled by one person), i.e. the one who completed 1023 problems.

The results for the Z2 data set are slightly worse than for the Z1 data set. The M2 model
obtained 57% accuracy despite the larger number of people to whom tasks could be assigned.
Similarly to the M1 model, the model’s effectiveness was high around the 30th epoch and then
decreased. Similarly, the M2 model also tends to favor people who completed more problems.
This is logically justified, because the more problems a person has done, the more potential
connections they have with new problems that appear in the graph. However, favoritism is
"balanced" in the M2 model, each of the 3 people who did more problems than the other 5
generates false predictions to a similar extent. This cannot be said about the M1 model, where
the greater part of false predictions was generated by 1 person who had a comparable number of
problems to person number 2. Therefore, despite having lower efficiency, the M2 model seems
to be more balanced than the M1 model.

The M3 model trained on the Z3 dataset aims to test how well the model copes with a
large number of people to assign tasks to. The model assigns tasks to M3 between 24 people,
which is significantly more than the M1 model (5 people) and the M2 model (8 people). In
addition, the Z3 dataset contains 11,909 problems, while the Z2 dataset contains only 3,848.
This translates into much worse results than the M1 and M2 models. The M3 model achieved
only 34% accuracy. Despite the obvious deficiencies in the M3 model’s accuracy, its learning
process was much more stable than the other models. For some people who had fewer problems,
there are no visible good problem matches, while others have practically only correct matches.
Considering the stability of learning and the trends, it can be assumed that the biggest problem of
the M3 model is the poor quality of the dataset, where some people have high problem matching
efficiency, and others close to zero.

The last of the M4 models was trained on the Z4 set. This set contains people who have
a very similar number of problems. The pool of people to be assigned was 8 and the model
achieved an efficiency of 54%. Additionally, a test was conducted for this model, simulating real
problem assignment in which many people have the competence to perform a given problem, so
it was assumed that the assignment is true if the real label is among the 3 most probable labels.
For this test, the efficiency was 78%. The model learns less in steps in the case of a larger
amount of data. Accuracy values, where the margin of error is taken into account, are more
stable than in the case of simple accuracy. The M4 model does not tend to assign tasks to person
number 1, despite having 116 more tasks than person number 8 and is generally balanced for
the low quality of the data.

6. Conclusions
The research involved the analysis and implementation of deep learning models supporting IT
project management processes, in particular the automatic assignment of tasks to programmers
based on their competences. To enable experiments, the data sets were created that reflect
different types of organizations differing in structure and content. These sets were designed to
simulate real working conditions in diverse teams, both in terms of the number of people and
the number of problems that these people solved. Models based on the proprietary GraphSAGE
architecture were trained on their basis. The tests carried out showed that despite achieving
different results, the models tend to favor people who solved a larger number of problems. This
is understandable, considering the fact that a larger number of completed tasks provides more
data for analysis and drawing conclusions, which leads to more frequent assignment of tasks to
such people. This is particularly visible in the results of models, which tend to assign tasks to the
most active people, which leads to a certain unbalanced distribution of tasks. However, despite



ISD2025 BELGRADE, SERBIA

this tendency, the models showed potential and stability in the learning process. The analysis
of the objective function graphs and accuracies shows that the models learn in a controlled
manner and their performance is satisfactory in many cases. In the case of models, which were
tested on more complex and larger data sets, it was noticed that despite the decrease in accuracy,
the stability of the learning process was clearly better, which suggests that the GraphSAGE
architecture copes well with larger data sets and more complex structures.

References
[1] Agibetov, A., Blagec, K., Xu, H., Samwald, M.: Fast and scalable neural embedding models

for biomedical sentence classification. In: BMC Bioinformatics, Vol. 19, pp. 541 (2018)

[2] BigCode Project. bigcode/the-stack-github-issues. [Online] https://huggingface.co/
datasets/bigcode/the-stack-github-issues, 2023. Accessed: 10.2024.

[3] Borhan, N., Zulzalil, H., Hassan, S., Mohd Ali, N.: Requirements Prioritization Techniques
Focusing on Agile Software Development: A Systematic Literature Review. In: Interna-
tional Journal of Scientific & Technology Research, Vol. 8(11), pp. 2118–2125 (2019)

[4] Boswell, D.: Introduction to support vector machines. In: Department of Computer Science
and Engineering University of California San Diego, Vol. 11, pp. 16–17. (2002)

[5] Brower, H.H., Nicklas, B.J., Nader, M.A., Trost, L.M., Miller, D.P.: Creating effective aca-
demic research teams: Two tools borrowed from business practice. In: Journal of Clinical
and Translational Science, Vol. 5(1), pp. e74 (2020)

[6] Chen, Z., Wang, Z., Yang, Y., Gao, J.: Resgraphnet: Graphsage with embedded residual
module for prediction of global monthly mean temperature. In: Artificial Intelligence in
Geosciences, Vol. 3, pp. 148–156 (2022)

[7] Ciupe, A., Orza, B., Florea, C., Vlaicu, A.: Skill-oriented priority scheduling for solving
the resource constrained project scheduling problem. In: IEEE International Conference on
Intelligent Computer Communication and Processing (ICCP), Romania, pp. 85–92 (2015)

[8] Fletcher, T.: Support vector machines explained. Tutorial Paper (2009)

[9] Hugging Face. Hugging face platform. [Online] https://huggingface.co, 2023. Accessed:
11.2024.

[10] Karabiber. Tf-idf—term frequency-inverse document frequency. [Online]
https://www.learndatasci.com/glossary/tf-idf-term, 2020. Accessed: 11.2024.

[11] Korytkowski, P., Malachowski, B.: Competence-based estimation of activity duration in it
projects. In: European Journal of Operational Research, Vol. 275(2), pp. 708–720 (2019)

[12] Lefever, Y.: Guesslang: Programming language detection. [Online] https://github.com/
yoeo/guesslang, 2023. Accessed: 11.2024.

[13] Lubis, A.R., Nasution, M., Sitompul, O.S., Zamzami, F.M.: The effect of the tf-idf algo-
rithm in time series forecasting for word relevance on social media. In: Indonesian Journal
of Electrical Engineering and Computer Science, Vol. 22(2), pp. 976–984 (2021)

[14] Milojevic, D., Macuzic, I., Dordevic, A., Savkovic, M., Dapan, M.: Comparative analysis
of software tools for agile project management. In: Quality Festival 2023, ISBN 978-86-
6335-104-2 (2023)



PONISZEWSKA-MARANDA ET AL. AUTOMATION OF SELECTED PROCESSES IN IT . . .

[15] Momanyi, B.M., Zhou, Y.W., Grace-Mercure, B.K., Temesgen, S.A., Basharat, A., Ning,
L., Tang, L., Gao, H., Lin, H., Tang, H.: SAGESDA: Multi-GraphSAGE networks for
predicting SnoRNA-disease associations. In: Current Research in Biomedical Sciences, Vol.
7, pp. 100122 (2024)

[16] Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression analysis.
In: Wiley (2021)

[17] Priyam, A., Abhijeeta, G.R., Rathee, A., Srivastava, S.: Comparative analysis of decision
tree classification algorithms. In: International Journal of Computer Applications, Vol. 3(2),
pp. 334–337 (2013)

[18] Qaiser, S., Ali, R.: Text mining: use of TF-IDF to examine the relevance of words to
documents. In: Intern. Journal of Computer Applications, Vol. 181(1), pp. 25–29 (2018)

[19] Qureshi, H.A., Shah, Y.A.R., Qureshi, S.M., Shah, S.U.R., Shiwlani, A., Ahmad, A.: The
promising role of artificial intelligence in navigating lung cancer prognosis. In: International
Journal For Multidisciplinary Research, Vol. 6(4), pp. 1–21 (2023)

[20] Riandini, M., Zarlis, M., Situmorang, Z.: Determination of internship location for out-
standing students of smk singosari using the k-means clustering algorithm. IN: AIP Confer-
ence Proceedings, Vol. 3065(1), pp. 030016 (2024)

[21] Salehinejad, H., Sankar, S., Barfett, J., Colak, E.: Recent advances in recurrent neural
networks. In: arXiv preprint arXiv:1801.01078 (2017)

[22] Sarhadi, P., Naeem, W., Fraser, K., Wilson, D.: On the application of agile project man-
agement techniques, v-model and recent software tools in postgraduate theses supervision.
In: IFAC-PapersOnLine, Vol. 55(17), pp. 109–114 (2022)

[23] Soroka-Potrzebna, H.: Barriers of knowledge management in virtual project teams: a
TISM model. In: Procedia Computer Science, Vol. 207, pp. 800–809 (2022)

[24] Suarez-Varela, J., Almasan, P., Ferriol-Galmes, M., Rusek, K., Geyer, F., Cheng, X.:
Graph neural networks for communication networks: Context, use cases and opportunities.
In: IEEE Network, Vol. 37(3), pp. 146–153 (2022)

[25] Unnikrishnan, R., Kamath, S., Ananthanarayana, V.S.: Benchmarking shallow and deep
neural networks for contextual representation of social data. In: Proceedings of 18th India
Council International Conference (INDICON), India, pp. 1–8 (2021)

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. In: Proceedings of 31st International Conference
on Neural Information Processing Systems, pp. 6000–6010 (2017)

[27] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph atten-
tion networks. In: Proc. of International Conference on Learning Representations (2017)

[28] Vrahatis, A.G., Lazaros, K., Kotsiantis, S: Graph attention networks: A comprehensive
review of methods and applications. In: Future Internet, Vol. 16(9), pp. 318 (2024)

[29] Wu, L., Chen, Y., Shen, K., Guo, X., and Gao, H., Li, S.: Graph neural networks for natural
language processing: A survey. In: IEEE (2023)

[30] Zhang, Y., Yu, X., Cui, Z., Wu, S., Wen, Z., Wang, L.: Every document owns its structure:
Inductive text classification via graph neural networks. In: arXiv:2004.13826 (2020)


