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Abstract

Data augmentation is crucial for image segmentation, especially in transfer learning with limited
data, however it can be costly. This study examines the cost-benefit of augmentation in facade
segmentation using unmanned aerial vehicles (UAV) data. We analysed how dataset size and
offline augmentation impact classification quality and computation using DeepLabV3+ archi-
tecture. Expanding the dataset from 5 to 480 thousand tiles improved segmentation efficiency
by an average of 3.7%. Beyond a certain point, further dataset expansion yields minimal gains,
in our case, just 1%, on average, after segmentation accuracy plateaued at around 76%. These
findings help avoid the computational and time costs of ineffective data augmentation.
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1. Introduction

Data augmentation enhances deep learning (DL) models’ generalisation while reducing data
collection and labelling efforts, using various image modifications. This technique is crucial in
architecture, engineering, and construction (AEC), where DL supports labor-intensive tasks like
data collection, inspection, and management.

Augmentation addresses architectural variability and labelled data scarcity. While DL mod-
els require large datasets, AEC segmentation datasets remain small due to costly, specialized
unmanned aerial vehicle (UAV) data acquisition. Despite its benefits across industries, a re-
search gap exists in the AEC regarding cost-effective augmentation methods that improve the
facade inspection process. Augmentation in the facade segmentation process presented in [6] is
only a part of a broader segmentation approach. Our study fills the research gap by analysing
how augmentation affects model efficiency and training costs in UAV-based facade segmenta-
tion. We showed that beyond a certain dataset size, returns diminish as model performance
plateaus, providing strategic insight for resource allocation.

We explored limitations of public facade datasets in size, diversity, and content. Our medium-
sized dataset (475-2,850 images, depending on the dataset variant) was collected for architec-
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tural variety. We tested key augmentation techniques, comparing models trained on augmented
versus original data, to assess their economic impact.

2. Related Works

Various data augmentation strategies for video action recognition, presented in [8], demonstrated
that augmentation can improve the model’s performance. Utilising geometric transformations
and colour variations to expand the dataset derived from UAV photogrammetry enhanced the
DL model’s ability to recognise windows under varying conditions and views [3]. The impact
of augmentation on wall and roof damage classification using UAV images, focusing on veg-
etation on facades and roof dirt, was discussed in [1]. The tailored geometric transformations
significantly improved classification accuracy.

While our research addresses similar data limitation challenges, we focus on more detailed
facade semantic segmentation and employ more diverse augmentation techniques beyond ge-
ometric transforms to provide wider feature variability. The under-explored issue of augmen-
tation cost is particularly relevant in today’s context of resource-intensive computation versus
expensive data collection. Our study addresses this gap by identifying efficient augmentation
strategies that balance model performance with computational resource usage. It is worth noting
our methodology’s limitations—we use offline methods without adapting to class distribution.

3. Materials and Methods

3.1. Augmented Dataset Creation

The dataset comprised RGB photographs of facades from 26 buildings from four Polish cities,
collected during UAV missions. Mission parameters were optimized to capture facade details,
with 80% front and 60% side coverage. Drones flew vertically along facades at distances of
5-10 meters. All images were captured in daylight with good weather.

The dataset was split into six versions, with growing training and validation sets, keeping
the test set constant. Selection maximized diversity in camera models, resolutions, architectural
styles, and building functions. Images came from three drones and five cameras across four dif-
ferent resolutions. Three resolutions (5472 x 3648, 4000 x 3000, 8192 x 5460) were distributed
across training, validation, and test sets, while the fourth resolution (5280 x 3956) appeared
only in training and test sets. Of the 26 buildings, 19 were used for training, 3 for validation,
and 4 for testing. Training data included all drone types, camera models, building styles, and
functions, while validation and test datasets had more limited diversity.

The dataset was divided into six versions (V1—V§) to evaluate the impact of augmentation.
Each subsequent version increased the number of training images per building, while 15% of im-
ages were reserved for validation. The test set remained fixed across all experiments, containing
images from four buildings to ensure consistent performance comparison. This setup ensured
varying training sizes while controlling evaluation conditions. A summary of the dataset ver-
sions is shown in Table 1.

We identified five classes: brick, metal, windows, plaster, and roofing. Distribution was
uneven, with plaster dominating, followed by windows, especially in modern buildings. Metal,
brick, and roofing were less common. Metal elements were rather small, while brick appeared
mostly in historical buildings. Despite covering large areas, roofing was often hard to capture
due to UAV angle and distance.

We applied a tailored data augmentation approach for UAV-based facade segmentation,
guided by the characteristics of aerial imagery and facade analysis needs. Our research used
the following augmentation methods: horizontal flip, random brightness and contrast shift, ran-
dom shadow, and Gaussian noise. The augmentation techniques used in the research are shown
in Fig. 1.
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Table 1. Number of images and tiles in each data set.

Training Validation Testing

Images Tiles | Images Tiles | Images Tiles
|41 19 5,086 3 767 180 | 50,613
Vs 95 | 25,366 15 | 4,018 180 | 50,613
Vs 190 | 53,425 30 | 7,909 180 | 50,613
Vy 285 | 80,594 45 | 12,618 180 | 50,613
Vs 380 | 103,579 60 | 17,459 180 | 50,613
Vs 475 | 133,675 75 | 21,936 180 | 50,613

Original Horizontal Flip Contrast Random Shadow Gauss Noise

Fig. 1. Augmentation techniques.

3.2. Comparison with other datasets

In the field of facade semantic segmentation utilising UAV-data, our dataset stands out for its
high resolutions, varying from 4000 x 3000 to 8192 x 5460 pixels, and their corresponding tile
count. In contrast to typical datasets in this field, characterised by lower-resolution photographs
and smaller tile counts, our dataset features larger tiles: 512 x 512 pixels. This allows for a
more global and contextual analysis. Our dataset is rich in classes, facilitating detailed facade
segmentation. Regarding the image count, our dataset is relatively modest, consisting of 475
photos before and 2,850 after augmentation.

For the comparison, in [7], 1,035 ground-view images across five classes, including building,
window, and door classes, with the addition of vegetation and ground were employed. In post-
augmentation, the dataset grew to 3,924 tiles, each 300 x 300 pixels in size. However, the exact
size of the test set was not specified. It was estimated to consist of approximately 2,757 images.
Also, the exact resolution of the dataset was not specified. In contrast, when expanded to its
largest version, our study’s dataset had 133,675 tiles for training, 21,936 for validation, and
50,613 for testing. This highlights significant differences in both augmentation technique and
methodology.

The dataset used in [1] consisted of 1458 photos from two distinct cameras (at 2464 x 1632
and 3840 x 2160 resolutions). Augmentation was not employed. Compared to our dataset, their
dataset is more extensive regarding the number of photographs; however, it is characterised by
a lower resolution than ours. Also, the datasets presented in [2, 3, 4, 5] are characterised lower
resolution and smaller patch sizes than in our case.

4. Results

In our experiments, the DeepLabV3+ model was trained twelve times, six times with the datasets
V1 - Vg without any augmentation applied, and six times with the augmented datasets V; aug
- V6 aug. Augmentation significantly increases training time. For version V7, training with-
out augmentation takes only 1.55 [h], while with augmentation it rises to 15.32 [h]. This trend
continues across all versions. Version V3 requires 9.17 [h] without augmentation and 38.51 [h]
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with it. For V3, the times increase to 14.84 and 44.44 [h], respectively. The most substantial
durations are observed for Vy, Vs, and Vg, with augmented training times reaching 72.06, 76.21,
and 118.04 [h], respectively. Those results underscores the computational demands associated
with different dataset configurations and compares the training time for data with and with-
out augmentation. Furthermore, the F1 score was evaluated across all classes. Given the class
imbalance and semantic distinctions between the classes associated with different facade mate-
rials, assessing the model’s segmentation efficacy for each class was crucial. Fig. 2 illustrates
the model’s varying performance across classes.
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Fig. 2. F1 scores across classes

Analysing F1 scores revealed that data augmentation improves segmentation, especially in
early dataset versions. Performance gains were most notable in versions V,—V3, where augmen-
tation enhanced segmentation across all classes, particularly for challenging elements like metal.
However, from V; onward, improvements plateaued, with only minor differences in plaster and
background segmentation.

Metric gains (IOU, ACC, F1) dropped from 0.057 /0.022/0.041 in V1-V3 to 0.029 / 0.015
/ 0.018 in V-V, despite training time nearly tripling (from 24.24 to 63.10 hours). From Vj
to Vg, an extra 189.31 hours yielded minimal quality improvement. These results illustrate the
diminishing returns of augmentation beyond a certain dataset size and support more efficient
resource allocation.

4.1. Statistical analysis

To analyse the statistical importance of improvements by applying augmentation, for each qual-
ity measure, a vector of the obtained results was created for each recognised class, and each data
set (V1 — Vg). A similar vector was created for each augmented data set (V] aug — Vg aug).

The vectors were compared separately for each dataset version using the one-tailed Wilcoxon
paired signed-rank test — with a significance level of a = 0.05 — to evaluate if the results ob-
tained after augmentation were higher. Next, each vector was extended by adding the mean
value of the measure calculated across all classes. This step stressed the importance of global
change across all classes, not only a change in a single class. Finally, a vector containing all
measures was created to perform the tests with the significance level o = 0.01.

A statistically important improvement of all three measures by data augmentation was ob-
served only for dataset V5 (p < 0.03). However, for the vector containing all measures, im-
provement is observable for 1 (but the reference level for the improvement is relatively low)
and V3-Vs (p < 0.01). This observation implies that extending the most extensive dataset, Vg,
is not rational from a statistical point of view.
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5. Conclusions

Our research offers key insights into data collection and augmentation strategies in cost-intensive
AEC sector. We identified a threshold of around 480,000 tiles where data augmentation’s bene-
fits plateaus. Below this point, computation hours yielded a 3.7% efficiency improvement; above
it, 90.87 hours led to just a 1% gain, highlighting the limited benefit of expanding datasets past
critical thresholds. These findings suggest that acquiring new data may be more effective than
relying exclusively on augmentation.

Despite its contributions, this study has limitations. It focuses on offline augmentation,
future work could explore adaptive, lightweight online techniques that are more efficient and
context-aware. While DeepLabV3+ is widely used in AEC, newer models may offer better
performance. Additionally, our dataset is also limited in size and diversity. Expanding it to
include more building types, materials, and varied environmental conditions could yield deeper
insights and potentially different results.
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