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Abstract 

Time series classification has emerged as a pivotal endeavor in the realm of machine 

learning applications. This task is considered supervised learning, aimed at categorizing 

distinct classes within time series data. The present study introduces MuRBE (Multiple 

Representation-Based Ensembles), an innovative meta ensemble structure explicitly 

designed for time series classification. The MuRBE leverages the power of diverse 

representation domains, including feature-based, dictionary-based, interval-based, and 

shapelet-based methods. Exploiting complementary information from different 

representations makes it particularly effective to improve classification performance. A 

total of thirty distinguished benchmark datasets were utilized to evaluate the effectiveness 

of the proposed method, leading to competitive performance results. Notably, our approach 

secures a second rank among current state-of-the-art techniques. 
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1. Introduction 

Within the realm of machine learning, time series classification has become a crucial task. 

As the complexity and volume of time series continue to grow, various algorithms have 

been developed. Recent investigations in ensemble techniques have received considerable 

interest due to their capacity to enhance accuracy by merging the advantages of multiple 

classifications, which served as the motivation behind our research. 

In this study, we introduce MuRBE (Multiple Representation-Based Ensembles), a 

novel meta ensemble approach for time series classification. MuRBE leverages the power 

of diverse representation domains, including feature-based, dictionary-based, interval-
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based, and shapelet-based methods. The study makes a unique contribution by integrating 

various domain classifiers through a fuzzy rank-based ensemble structure, which is not 

previously explored in the context of time series classification. The MuRBE aims to 

capture a wide range of temporal patterns and discriminatory characteristics. This approach 

leads to improved classification performance. By exploiting complementary information 

from different representations, making it particularly effective for complex time series 

classification tasks.  

Our proposed MuRBE structure incorporates four different representation domains. 

Two of them are from recent studies, such as feature-based Autoregressive Fractional 

Integrated Moving Average with Random Forest (ARFIMA-RF) [12] and dictionary-based 

Symbolic Aggregate Approximation with Stacking Gated Recurrent Unit and 

Convolutional Neural Networks (SAX-SGCNN) [13]. We also take into consideration 

interval-based Diverse Representation Canonical Interval Forest (DrCIF) [8] and shapelet-

based Random Dilated Shapelet Transform (RDST) [5].  

We conducted an empirical experiment on 30 well-known benchmark datasets. We 

performed a comparative analysis, evaluating the classification outcomes of our approach 

against those achieved by current state-of-the-art methods. Furthermore, we have made the 

source code publicly available through a provided link 1.  

2. Literature Review 

In contrast to conventional classification tasks wherein the sequence of attributes is 

irrelevant, time series classification entails the examination of temporally interrelated 

attributes, necessitating the analysis of comprehensive ordered sequences or time series 

data. The classification process involves predicting a class label for a sequence based on 

its measurable attributes or characteristic features. In turn, a classifier is utilized to 

distinguish between sequences that originate from different classes, with each sequence or 

time series having an equivalent set of extracted features.  

A range of representation techniques has been specifically designed to classify time 

series data. Those techniques can be categorized based on the fundamental data 

representation employed. Feature-based approaches depend on global features extracted 

through a straightforward pipeline and fed into an appropriate classifier. Dictionary-based 

methods transform real-valued time series into discrete symbol sequences, thereby 

exploiting the frequency of recurrent patterns. Interval-based approaches generate features 

from specific time segments within the series, revealing temporal characteristics that might 

be obscured by irrelevant data. Shapelet-based approaches identify phase independent 

subsequences to effectively discriminate between time series. 

The current state-of-the-art methods in the classification of time series is to utilize two 

or more representations. This methodology can be classified into four distinct categories. 

The first category is modular heterogeneous ensembles, where each component comprises 

a classifier designed based on a specific type of representation. For example, the 

Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE 2.0) or 

HC2 [8], at that time, was considerably more accurate on average compared to other 

established state-of-the-art techniques. Another approach, the Time Series Combination of 

Heterogeneous and Integrated Embedding Forest (TS-CHIEF) [11], is a classifier that 

bears the closest resemblance to HC2. TS-CHIEF consists of an ensemble of trees that 

incorporate distance, dictionary, and spectral-based features.  

The second category comprises tree based homogeneous ensembles that incorporate a 

specific representation within the tree nodes. One notable technique is the Random Interval 

Spectral Ensemble (RISE) [4], an interval-based tree ensemble that employs a randomly 

unique chosen interval for every constituent classifier. In this method, the autoregression 

and periodogram functions are computed for each randomly selected interval, and these 

features are then combined into a feature vector. This vector is subsequently used to 

construct a tree. Another well-known approach is the Temporal Dictionary Ensemble 

(TDE) [8], which also falls under this category. 

The third category is deep learning ensembles with embedded network representations. 

 
1 github.com/rauzansumara/murbe-for-time-series-classification 
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An example is InceptionTime [6], which combines five identical residual networks 

featuring inception modules. The fourth category utilizes convolution techniques to 

generate extensive new feature spaces, which are then analyzed using a linear classifier. 

One popular algorithm within the category is the ensemble of Random Convolutional 

Kernel Transform (ROCKET) models, also known as Arsenal [8]. The ROCKET [2] 

generates numerous summary statistics using randomly initialized convolutional kernels 

and then builds a linear ridge classifier to identify the classes. 

It is also important to mention some of the current advanced methods that focus on a 

single representation. The Randomized Supervised Time Series Forest (RSTSF), 

introduced by [1], stands out as an interval-based tree incorporating a supervised technique 

for interval extraction, leveraging summary statistics and spectral features. FreshPRINCE 

[7] is a feature-based rotation forest classifier built under 800 extracted features from time 

series. Additionally, recent innovations include the Hybrid Dictionary-ROCKET 

Architecture (Hydra) [3] and Word Extraction for Time Series Classification with Dilation 

(WEASEL-D) [10]. These classifiers will also serve as benchmarks for comparison against 

the method proposed in this research. 

3. The MuRBE Structure 

This section provides a concise understanding of the MuRBE structure. The MuRBE is a 

heterogeneous ensemble having four modules each from a different representation. The 

component modules are: the ARFIMA-RF from feature-based representation [12]; SAX-

SGCNN from the dictionary-based representation[13]; the interval-based DrCIF [8]; and 

the shapelet-based RDST [5]. These were chosen due to being one of the best in their 

domain representation. It is advisable to look at their original source to gain a 

comprehensive understanding of the base classifiers. 

The four modules are ensembled using the fuzzy rank-based method, which was 

recently recognized as one of the most effective combinatorial approaches for different 

classifiers even with constrained domain expertise or antecedent knowledge [14]. Due to 

incorporating nonlinear functions to process decision scores, the fuzzy rank-based 

ensemble provides more flexible, dynamic, and adaptive weights of individual models 

based on their performance in specific contexts or regions of the input space. Unlike 

traditional ensemble methods, e.g., simple average or weighted average rules, they often 

use fixed weights, which may not adapt well to varying conditions.  

The structure of MuRBE is presented in Figure 1. In the initial phase, each component 

is trained independently using standardized time series data and then required to produce 

a probability estimate (confidence score) for each class. After that, these probability scores 

from the base classifiers undergo transformation through two nonlinear functions: the 

exponential function and the hyperbolic tangent function. Due to their performance 

advantages, these nonlinear functions are commonly utilized to develop a tilted 

distribution, thereby emphasizing the distinctions between classifiers [14]. 

Figure 2 displays the graphs of these functions. The hyperbolic tangent function acts 

as a reward function while the exponential function acts as a decreasing function. The �-

axis represents the probability of a class, where the exponential function measures the 

divergence from its objective for a class with a given prediction probability. As the input 

decreases, the divergence diminishes, ultimately reaching 0 when � equals 1. In contrast, 

the hyperbolic tangent function assesses the reward allocated to a class. The reward 

increases as the input grows, eventually reaching 1 when � equals 1. Consequently, using 

two nonlinear functions with varying concavities aims to yield complementary outcomes. 

After mapping confidence scores from two functions with different concavities to 

create nonlinear fuzzy ranks, we combine these ranks to produce a rank score. This rank 

score is calculated as the product of divergence and reward corresponding to a specific 

confidence score. This procedure is repeated in each base classifier, and the rank scores 

are summed to determine the final fused score. A higher confidence score leads to a lower 

fused score, signifying a more accurate prediction. Therefore, the smallest fused score is 

considered the predicted class for the ensemble model. To enhance understanding of the 

concepts, we provide detailed steps for the proposed fuzzy rank-based ensemble as follows: 
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First, we calculate all the confidence scores. The confidence score of classes given by 

the base classifier is defined as ��� , where � �  1, 2, . . . , � is the number of classes and 
 � 1, 2, . . . , � is the number of base classifiers. Given that ��� ∈  �0, 1�, the probabilities ���� , ��� , … , ��� � of C classes on the base classifier-
 essentially will satisfy the following 

condition, 

 

� ���
�

���
� 1, ∀
 � 1,2, . . . , �. (1) 

 

 
 

Fig. 1. The structure of the proposed method. 

 

 
 

Fig. 2. Visualizations of nonlinear functions utilized for calculating fuzzy ranks. 

 

Since we utilized two nonlinear functions, let us consider (����, ����, … , ����) and 

(����, ����, … , ����), which are fuzzy ranks computed by using the hyperbolic tangent and the 

exponential functions expressed by 

 

���� � 1 � �� ℎ "#��� � 1$�
2 % , � & ���� � 1 � '�� "� #��� � 1$�

2 %.  (2) 

 

Next, we can then determine the rank scores �(��  through the multiplication of fuzzy ranks ���)
. The fuzzy ranks are derived from nonlinear functions by substituting the confidence scores 

from the base classifiers. The standard notation for calculating the rank scores is presented as 

follows, 

 

�(�� � * ���)+

)��
, ∀� � 1,2, . . . , �  and ∀
 � 1,2, . . . , �, (3) 
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where / �  1, 2, . . . , 0 is the number of chosen nonlinear functions, and the functions are 

bounded within [0, 1]. The product of the two nonlinear functions denoted as �(�� ����� 1 ���� is given in Figure 2. After that, the final fused score �2(�, 2(�, . . . , 2(�� is 

calculated by the equation as follows, 

 

2(� � � �(��
3

���
, ∀� � 1,2, . . . , �. (4) 

 

The class with the minimum final fused score is selected as the predicted class. This fused score 

serves as the ultimate value for each class, which can be expressed through the following 

formula, 

 45 � 6
 ∀� 2(�. (5) 

 

Figure 3 illustrates an example of how our proposed ensemble method works. 

 

 
 

Fig. 3. An overview of the proposed ensemble structure for a three-class problem. 

 

4. Experimental Results 

We conducted experiments using 30 out of 112 publicly available time series datasets from 

the UCR/UEA time series classification achieve [15]. The archive is commonly used in 

data mining and machine learning literature. We proportionally selected these datasets 

according to the number of accessible datasets in each category to ensure a comprehensive 

evaluation. This strategy improved the robustness of the study by enabling us to maintain 

a balanced representation across several categories. 

The selected datasets had diverse properties, such as different numbers of classes and 

lengths of series, and different numbers of observations given on the train and test sets. 

The type of datasets also differs. We have Spectro data (Coffee, Meat, OliveOil), Simulated 

data (ShapeletSim, SyntheticControl, TwoPatterns), Sensor data (Earthquakes, FordA, 

Lightning7, Trace), Motion data (CricketZ, GunPoint, InlineSkate), Image data (BeetleFly, 

BirdChicken, FaceFour, FiftyWords), and more. A comprehensive evaluation was possible 

due to these differences. The datasets are presented in Table 1. Due to space limitations, 

we cannot include a full summary here. However, it is available on the cited website. 

The experiments were performed using Python 3.11.5 on a computer with an 8-core 

CPU, 16 gigabytes of RAM, GeForce GTX 1660 Ti graphics card (GPU), and the Windows 

11 operating system. Subsequently, the train set from the repository was operated to train 

the models, given that the datasets within the repository were already divided into train and 
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test sets. We utilize the same train-test split as is to ensure our results are comparable to 

the previous study. During the evaluation, the compared results are limited to the test sets 

only. To maintain consistency with existing literature, we used the default parameter 

configuration setting described in its literature for the base classifiers in MuRBE. More 

complete default setting reviews can also be found in [9]. For the state-of-the-art methods 

used as competitors in the study, the default settings for the parameter configuration were 

applied. Last but not least, we also provided critical difference diagrams (CD) as a post-

hoc analysis, employing the Wilcoxon-Holm method with 7 � 5%. 

Table 1 only provides the associated accuracy of base classifiers and MuRBE. Average 

accuracy and rank are also offered in the last two rows of the table, respectively. As a 

result, the MuRBE consistently outperforms the base classifiers with an average accuracy 

of over 1% more accurate. Our core result is that the proposed method proves to improve 

classification performance in terms of accuracy. Moreover, the CD diagram in Figure 4(a) 

displays MuRBE compared to the base classifiers based on the average ranks on 30 

datasets. A lower average rank implies better accuracy of a certain method, and solid bars 

group classifiers between two or more methods for which there are statistically 

insignificant differences. Out of 30 datasets, The MuRBE ranks one above all the base 

classifiers, demonstrating its superiority over four base classifiers. 

 
Table 1. Our proposed MuRBE compared to base classifiers in terms of accuracy. 

 
Datasets ARFIMA-RF SAX-SGCNN DrCIF RDST MuRBE 

BeetleFly 0.9000 1.0000 0.9000 0.9500 0.9000 

BirdChicken 1.0000 1.0000 0.9500 0.9000 0.9500 

Coffee 1.0000 1.0000 1.0000 1.0000 1.0000 

CricketZ 0.7487 0.7870 0.8026 0.8564 0.8590 

DistalPhalanxOutlineCorrect 0.8007 0.7790 0.7826 0.7754 0.7754 

DistalPhalanxTW 0.6835 0.7754 0.6906 0.7122 0.7194 

Earthquakes 0.7482 0.7681 0.7482 0.7266 0.7482 

ECG200 0.8600 0.8200 0.8800 0.8900 0.8600 

FaceFour 0.9659 0.9545 0.9886 0.9886 1.0000 

FiftyWords 0.7231 0.9890 0.7978 0.8527 0.8330 

FordA 1.0000 0.8974 0.9682 0.9447 0.9561 

GunPoint 0.9800 1.0000 0.9933 1.0000 1.0000 

Herring 0.5625 0.7094 0.6406 0.6875 0.6094 

InlineSkate 0.4873 0.4202 0.5600 0.4418 0.5436 

ItalyPowerDemand 0.9572 0.7467 0.9689 0.9397 0.9699 

LargeKitchenAppliances 0.8747 0.8427 0.8240 0.8267 0.9040 

Lightning7 0.7671 0.7397 0.7534 0.8082 0.8082 

Meat 0.9333 0.9267 0.9500 0.9333 0.9333 

MedicalImages 0.7855 0.7276 0.7882 0.7645 0.8066 

MiddlePhalanxOutlineCorrect 0.8557 0.7553 0.8316 0.8419 0.8488 

MiddlePhalanxTW 0.6039 0.6202 0.5909 0.5325 0.5779 

MoteStrain 0.9529 0.9233 0.9353 0.9337 0.9588 

OliveOil 0.9000 0.9193 0.9333 0.8667 0.8667 

Plane 1.0000 1.0000 1.0000 1.0000 1.0000 

ProximalPhalanxOutlineCorrect 0.8591 0.8385 0.8969 0.8763 0.9003 

ProximalPhalanxTW 0.8000 0.7260 0.7902 0.8146 0.8293 

ShapeletSim 1.0000 0.9889 0.9833 0.9889 1.0000 

SyntheticControl 1.0000 0.6233 1.0000 0.9933 1.0000 

Trace 1.0000 0.8800 1.0000 1.0000 1.0000 

TwoPatterns 0.9988 0.9963 0.9998 1.0000 1.0000 

Average accuracy 0.8583 0.8385 0.8649 0.8615 0.8719 

Average rank 3.0667 3.5500 2.8833 3.1167 2.3833 

 

Apart from that, we also consider several competitors mentioned in the literature. They 

are under the current state-of-the-art methods, such as ROCKET, Arsenal, RSTSF, Hydra-

MR, FreshPRINCE, WEASEL-D, InceptionTime, TS-CHIEF, RISE, TDE, and HC2. 
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Figure 4(b) illustrates the average ranks of MuRBE against each of the leading state-of-

the-art algorithms on 30 datasets. Overall, the proposed MuRBE method is highly 

competitive compared to the other methods. In particular, it outperforms the most current 

methods except HC2 in terms of accuracy. Based on average ranks, MuRBE achieves the 

second position and exhibits a slight edge over the leading fast algorithms such as Hydra-

MR, ROCKET, and WEASEL-D. It faintly underperforms as opposed to HC2 as the 

toughest and the most accurate competitor in the group, even though their differences are 

statistically insignificant. Our findings also indicate that the proposed MuRBE achieves 

more pairwise wins in Image, Simulated, Electrocardiogram (ECG), and Spectro data 

types. 

 

 

 
(a) (b) 

 
Fig. 4. CD diagram based on the average rank of MuRBE in comparison with (a) the base classifiers and (b) 

other competitors. 

 

 
 

Fig. 5. A box plot representing test accuracy for each algorithm. 

 

 
 

Fig. 6. Examining accuracy rank and train time over 30 datasets. 

 

Nevertheless, we conclude that the dataset type strongly affects the classification quality. In 

this regard, we would like to emphasize that none of the methods can outperform the other 

methods in all cases. Boxplots displayed in Figure 5, arranged by descending medians across 
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algorithms, illustrate how close the accuracy of MuRBE is in comparison with the current state-

of-the-art methods. Top-ranking algorithms have a narrow interquartile range (IQR), few 

outliers, and a median accuracy exceeding 80%. The boxplot also shows that Hydra-MR and 

WEASEL-D achieve the highest median among other algorithms. However, their medians tend 

to exceed the average accuracy, indicating a strong left skew. It signifies the presence of strong 

extremely low accuracy values, i.e., outliers, which stretch the boxplot distribution to the left. 

In contrast, the HC2 and MuRBE have an average accuracy nearly identical to their medians, 

indicating a weak skewness in their distributions. Moreover, the boxplot distributions of the 

proposed MuRBE and HC2 are related. This relation might be due to the fact that both methods 

use DrCIF as one of their component classifiers within their ensemble structures. As illustrated 

in Figure 4(a), DrCIF is a particularly strong base classifier compared to the others. 

Nevertheless, a more detailed explanation of the reasons behind this comparison will be 

provided in our future research. 

Although we believe that accuracy is crucial, we also provide the runtime as another 

factor in assessing algorithm performance. Figure 6 depicts the average accuracy rank 

against the runtime for all compared algorithms, revealing a clear trade-off between 

performance and runtime. Several important caveats should be noted when interpreting 

these results. Firstly, all algorithms, with the exception of InceptionTime, were executed 

on a single-thread CPU. Therefore, the runtime associated with InceptionTime is not 

directly comparable due to its operation on a GPU. Additionally, the maximum memory 

usage was not explicitly measured in this experiment, but it remained within the 16GB 

limit of the available memory on the CPU. The reported running times are sequential, 

reflecting the sequential memory usage. It is important to note that if all algorithms were 

multithreaded, the runtime would significantly decrease, of course. 

Considering these factors, we can draw several conclusions. Hydra-MR and ROCKET 

are capable of training models for all 30 datasets in less than 3 hours and 6 hours, 

respectively, even without multithreading. If time efficiency is the primary concern, 

Hydra-MR or ROCKET would be an excellent starting point for any analysis. On the other 

hand, TS-CHIEF is significantly slower and appears to scale less well than the other 

algorithms. Additionally, we see SAX-SGCNN as the slowest component within MuRBE, 

although this is attributed to the configuration of hyperparameter settings rather than 

inherent limitations. Specifically, it involved a wide range of hyperparameter tuning, 

namely the alphabet size and word length. For a small dataset, it requires much more 

runtime than other components (even though it is still under an hour). This will be an area 

for future improvement. Meanwhile, HC2 or MuRBE can be a worthy choice when 

prioritizing model accuracy over runtime. 

5. Conclusion 

This paper presents MuRBE as a novel meta ensemble approach for time series 

classification, which is designed from four different representation domains. Among the 

state-of-the-art algorithms, our proposed MuRBE outperforms them except for HC2. We 

are convinced its main advantage can be attributed to the presence of discriminatory 

features in multiple representation domains, which are common in many datasets. 

However, a significant limitation lies in its computational demands. Training time can 

become excessively long for large-scale problems involving tens of thousands of series 

with lengths in the tens of thousands or even more. The method might not be well scalable 

for such issues, but we believe there is potential for improvement. Future research could 

focus on enhancing individual components, particularly SAX-SGCNN, to enable more 

adaptive and intelligent reconfiguration settings for optimal runtime. Developing better 

strategies to address the issue will also be a key focus in future modifications. 
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