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Abstract

Recommendation systems are essential for delivering personalized content across e-commerce
and streaming services. However, traditional methods often fail in cold-start scenarios where
new items lack prior interactions. Recent advances in large language models (LLMs) offer a
promising alternative. In this paper, we adopt the retrieve-and-recommend framework and pro-
pose to fine-tune the LLM jointly on warm- and cold-start next-item recommendation tasks,
thus, mitigating the need for separate models for both item types. We computationally compare
zero-shot prompting, in-context learning, and fine-tuning using the same LLM backbone, and
benchmark them against strong PLM-based baselines. Our findings provide practical insights
into the trade-offs between accuracy and computational cost of these methods for next-item rec-
ommendation. To enhance reproducibility, we release the source code under
https://github.com/HayaHalimeh/LLMs-For-Next—-Item-Recommendation.
git.

Keywords: LLM for recommendations, next-item recommendations, cold-start problem.

1. Introduction

Serving as vital conduits for delivering engaging content to users, recommendation systems
(RS) have become indispensable across a broad spectrum of e-commerce applications, such as
online shopping [45], video [6], music [30], and movie platforms [13]. Traditional RS base
on collaborative filtering, content-based methods, or a mix of both. Collaborative filtering as-
sumes users will continue to prefer items similar to those they liked before, while content-based
methods match user profiles with item attributes [28].

In challenging scenarios, as in the cold-start item problem, where RS have to recommend
items that lack any interaction history, these models often struggle [28]. The cold-start item
problem frequently arises in real-world streaming media services [5]. For instance, how can a
movie platform recommend a newly released movie that no one has watched yet?

Collaborative filtering fails in cold-start settings because it relies on interaction histories.
Content-based methods can make use of item descriptions to match cold-start items to users.
However, they ignore the relational dynamics between users and their historically selected items
[35]. As a result, they may lose valuable insights as they do not preserve the sequential nature
of user consumption over time. Overcoming this challenge requires solutions that can general-
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ize well to improve user experience and drive greater engagement [12]. Pre-trained language
models (PLMs) offer promising avenues in this regard, due to their strong capabilities in se-
quential understanding and reasoning over text [3]. Building on this line of thought, researchers
have framed the next-item recommendation task as a language modeling problem [23], [31],
[44]. More recently, LLMs have gained attention for next-item recommendation [36], with the
retrieve-and-recommend framework emerging as a promising approach [9]. Here, the LLM re-
ceives a prompt including a user’s interaction history along with a set of candidate items. The
LLM is then tasked with inferring the most relevant next items from the given candidate set
based on that user history [12], [29]. This framework mirrors conventional RS pipelines, where
external candidate sets are created first and the recommendation model functions as a ranking
[41] or selection mechanism [24]. Prior work within the retrieve-and-recommend framework
has mainly focused on directly prompting the LLM in a zero-shot or in-context learning (ICL)
manner [7], [16], [34]. However, since LLMs are not inherently optimized for recommendation
tasks, their performance can suffer unless adapted or fine-tuned appropriately [1], [35], [42]. We
see a major advantage of the retrieve-and-recommend framework, as it can be purposed to han-
dle both warm-start items (with prior user interactions) and cold-start items (with none) using
the same system and, thus, mitigating the need for separate models for different item types.

As such, in this paper, (i) we propose to fine-tune the LLM on both warm- and cold-start
next-item recommendation tasks before prompting. By tuning on both scenarios simultaneously,
we hypothesize that the model can learn to accommodate both item types. Additionally, to build
the training data, we combine the standard leave-one-out strategy from next-item recommenda-
tion literature [39] with a disjoint user split, ensuring that both users and cold-start items in the
test set are entirely unseen during training. This setup compels the model to rely on generaliz-
able patterns to generate recommendations to new items and users that it had not encountered
before to minimize the necessity of repetitive fine-tuning. (ii) Using the same open-source LLM
backbone, we evaluate and compare zero-shot prompting, ICL, and fine-tuning approaches, and
benchmark them against state-of-the-art PLM-based baselines. We also assess the computa-
tional costs of each method and explore how their performance varies based on factors such as
the size of the candidate set and the number of training examples used during fine-tuning.

The remainder of this paper provides in Section 2 a brief background on traditional and
LLM-based methods for next-item recommendation, details the methodology in Section 3, il-
lustrates the experimental setting in Section 4, presents the results in Section 5 and discuss them
with limitations and future directions in Section 6. Finally, Section 7 concludes this paper.

2. Background

The next-item recommendation task considers the sequence of items a user has interacted with
in the past to generate personalized recommendations that adapt to her evolving interests [33].
Early methods used Markov Chains to capture item transitions [27], while later work adopted
deep neural networks to model sequential patterns more effectively [20], as well as, data aug-
mentation and contrastive learning to improve user and item representations [38], [46]. How-
ever, these methods rely on historical user interactions and, therefore, fail when encountering
cold-start items that lack prior interactions. One of the primary cold-start solutions is to in-
corporate auxiliary user or item information, such as social networks, genres, and tags [2], [4]
with the goal of learning a latent space that connects users to cold-start items. Helpful as that
is, this content-based solution does not preserve the interaction order in which users select their
historical items and may therefore lose relevant information for next-item recommendation [35].

Recent advances in natural language processing have led researchers to frame recommen-
dation as a language modeling task. For instance, by leveraging the reasoning capabilities and
sequential understanding of PLMs, early approaches reformulated item-based recommendation
into cloze-style tasks—where models predict the next-item a user might like by either predicting



ISD2025 BELGRADE, SERBIA

masked tokens in a text sequence [44] or by assigning relevance scores to items [31].

With the emergence of LLMs, more attention has shifted toward their application in RS.
Broadly speaking, LL.M-based recommendation methods fall into one of two paradigms: non-
tuning and tuning [11], [36]. In the non-tuning paradigm, the LLM’s internal weights remain
fixed and the model is guided via prompts. A popular strategy in this space is the retrieve-
and-recommend framework [7], [9], [16], [34]. Here, instead of letting the model generate
items from an open vocabulary, the model is restricted to choose from a fixed list of candidate
items. Specifically, the LLM is given a prompt that includes the user’s interaction history and
a relatively small set of possible next items (including the ground-truth next-item and distractor
items). The model is then task with selecting the most likely next-item based on that user’s
history [7], [9], [12]. Techniques in this area include zero-shot prompting [7], [34], where
the prompt includes a task-specific instruction to guide the model, and ICL [16], where the
prompt also includes one or a few interaction examples to help the model better understand
the recommendation task [36], [11]. This formulation serves three practical purposes: (1) An
unconstrained recommendation space complicates practical usage of LLMs [43]. (2) It aligns
well with retrieval-based recommendation systems, where an external module pre-selects items
and the LLM functions as a ranking [41] or selection mechanism [24]. (3) It mitigates the
hallucination problem, as it conditions LLLMs on retrieved items that match those in the item
database [9].

However, although non-tuning methods offer convenience for deployment, empirical evi-
dence shows that they often underperform because LLMs are not inherently optimized for rec-
ommendation tasks out of the box [1], [42]. The tuning paradigm addresses this by adjusting
model parameters—partially or fully—to better suit recommendation tasks, consequently im-
proving performance [42]. LLM-based next-item recommenders are often fine-tuned, as in tra-
ditional RS, on past interactions [39] and then used to directly generate the most likely next-item
without relying on a candidate set [19], making them unsuitable for cold-start items.

Instead, we propose to leverage the retrieve-and-recommend framework and to fine-tune the
LLM on both warm- and cold-start on disjoint users for next-item recommendation tasks prior to
prompting. We hypothesize that this joint fine-tuning step enables the model to better generalize
across both item types to select relevant items—even when the target item is entirely new.

3. Methodology

The following subsections provide a detailed overview of the methodology, including data con-
struction setup, candidate set generation, and the implementation of each LLM approach. A
visual summary of the overall methodology is presented in Figure 1.

3.1. Dataset Construction

To reproduces the standard next-item recommendation task for warm and cold-start items si-
multaneously in a dataset, let

U:{ulaUZa"'auz}a I:{ilai27"',ik‘} (1)

denote the sets of users and items in that dataset, respectively. We sample p% of the items
uniformly at random and mark them as cold-start items, obtaining

J:{jbj%"'vjé}gj- (2)
For every user u, the interaction history is represented by a time-ordered sequence

H, = (h1,ha,...,hp,), where T, = |Hy|. 3)
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Fig. 1. LLMs for warm and cold-start next-item recommendations across zero-shot prompting, in-
context learning and fine-tuning approaches.

~

We construct for every user u an evaluation pair (Hy, gu), where g, is the ground-truth item
that has to be predicted and H,, the truncated user history that does not include the withheld
ground-truth item. Taking the chronologically ordered nature of histories into consideration, we
identify the positions at which user u has interacted with a cold-start item

P,={t|h e J} 4)

Two mutually exclusive cases arise:

(1) Warm-start item case (P, = @): In this case, user u has never encountered a cold-start
item from J. Therefore, we define the ground-truth item as the final interaction and the prefix
as the truncated user history

9u = hr,, Hy = (hi,hg, ..., hy,-1). (5)

(ii) Cold-start item case (P, # @): Here, user u has interacted with at least one cold-start

item from J. Let t;, = min P, be the index of the first cold-start item that user u has interacted

with. We flag this item as the prediction target. To avoid information leakage from future
interaction, only the interactions strictly preceding this item form the truncated user history

gu=her,  Hy= (b1, ha,. . he 1), (6)

3.2. Candidate set generation

To generate the candidate set for each user, we sample uniformly at random from both warm-
and cold-start items o distractor items that are neither in the truncated user history nor equal to
the ground-truth

Su:{317327"'730}7 Sy N (ﬁuu{gu}) =, (7)

and then insert g, into this set, resulting in a candidate set size of o + 1. The candidate set is
randomly permuted before being integrated into the prompts. As discussed earlier, the model
receives the pair (ﬁu, S.), where the task is to select the item from the given candidate set S,
that user u is most likely to interact with next based on her/his truncated user history H u-
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3.3. Zero-Shot Prompting

In line with previous work [1], [10], [42], we use an instruction-based template and the LLaMA
model family [32]. LLaMA models support different roles, including system, user and assistant.
The system role defines the context for the interaction, while the user role provides the input to
the model (e.g. instruction and task-specific input). The assistant role then processes this input
and generates responses accordingly. The prompt template is structured as follows:

Role: System

Content: "You are a helpful Al assistant for recommendations”

Role: User

Content:"Given the user’s watch history: {H,}, and a set of o + 1 candidate movies: {S,}.
Recommend the next movies from the candidate set that the user would most likely watch next.
Return only the titles of the movies in ranked order without explanations."

Role: Assistant

Content: ""

3.4. In-Context Learning (ICL)

ICL additionally incorporates demonstration examples in the prompt. In the case of personalized
recommendations, introducing examples from other users may introduce noise, as different users
typically have distinct preferences. To avoid this, we follow [16] and adapt ICL by taking the
user’s own interaction sequence as the source of the demonstration example. Specifically, we
extract the secondAlast item hp_1 as the ground-truth item, and use the prefix of the interaction
sequence up to it H,, \ hp_1 as the truncated input history. We also provide a different candidate
set §u that is independently created from S,,. The prompt template is structured as follows:
Role: System

Content: "You are a helpful Al assistant for recommendations”

Role: User

Content: "Given the user’s watch history: {ﬁu \ hr_1}, and a set of o + 1 candidate movies:
{ §u }. The user chose to watch {hr_1} . Recommend the next movies from the new candidate set
{Su} that the user would most likely watch next. Return only the titles of the movies in ranked
order without explanations”

Role: Assistant

Content:

mn

3.5. Fine-Tuning

We fine-tune the LLM jointly on warm- and cold-start item recommendation tasks prior to
prompting. Once the dataset creation step is complete, we apply an 80/10/10 user split for
training, validation, and test. Users differ based on whether their ground-truth item is cold-start
(never seen during fine-tuning) or warm-start (seen during fine-tuning). We hypothesize, that
this setup activates the model’s ability to generalize by generating recommendations for disjoint
users with (i) unseen cold-start items and (ii) warm-start items it was trained on. Using the same
prompt template as in zero-shot prompting, the model learns during training to select the most
likely next-item from the candidate set regardless of item type. At test time, we assess whether
this fine-tuning strategy improves task adaptation and reduces the need for repeated retraining.

4. Experimental setting

4.1. Dataset

We use the MovieLens-1M (ML-1M) dataset [14] for evaluation. This dataset contains three
main components: (1) users, each identified by a unique ID; (2) movies, each with metadata
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such as titles; and (3) interactions, which are time-stamped ratings that indicate user preferences
and reflect the sequence in which users rated movies. In our experiments, we represent each
user by their chronological interaction history, where each interaction is expressed in terms of
the movie title they interacted with and rated. The goal of the next-item recommendation task is
to predict the item a user is likely to interact with next.

We selected this dataset for its long user interaction histories, which allow us to simulate
the cold-start next-item recommendation scenario without significantly reducing the user base.
Following standard practice, we retain users with at least five ratings (5-Core) [16] and randomly
designate 10% of the items as cold-start. Users are split into disjoint training, validation, and test
sets with no overlap, and cold-start items in validation and test remain unseen during training.
To ensure balanced evaluation, we maintain a roughly 1:1 ratio of cold-start to warm-start item
cases through random sampling. Table 1 summarizes the descriptive statistics after processing.

Table 1. Descriptive statistics of the ML-1M after processing: #Users (CGI) and #Users (WGI)
denote the number of users with a cold or warm-start ground-truth item, respectively.

Training Validation Test
#Users (WGI) 2692 315 357
#Users (CGI) 2019 331 326
Ratio CGI/(WGI + CGI) 0.43 0.51 0.48

4.2. Baseline Methods

We group the baseline methods into two categories. The first includes rule-based methods like
Random, which simply recommends items at random. The second includes strong PLM-based
approaches, commonly used for next-item recommendation [31], [37]. EmbSim [44] compares
the user’s history and item titles using embeddings and selects the item with the highest cosine
similarity. We use the stella_en_1.5B_v5 model for this, as it is currently the top-performing
model on the MTEB benchmark [26]. PairNSP [21] uses BERT’s next sentence prediction to
estimate how likely a candidate item logically follows the user’s history. Items are ranked by this
probability. ItemCLS [40] uses zero-shot classification with bart-large-mnli, treating the user
history as a "premise” and each candidate item as a "hypothesis" to rank items by likelihood of
being the next relevant choice.

4.3. Evaluation Metrics

We report the top-1 hit ratio (HR@1), which measures how often the model’s top recommen-
dation matches the ground-truth item. Additionally, since LLMs may generate invalid out-
puts—such as hallucinated items—we also report the inverse compliance rate (ICR) [7]. ICR
is defined as the proportion of invalid predictions relative to the total number of test samples,
where a lower ICR indicates better adherence to the task. Each prediction falls accordingly
into one of the following three types: Correct prediction, where the top-ranked generated item
matches the ground-truth item. False prediction, where the top-ranked generated item appears
in the candidate set but does not match the ground-truth item. Hallucinated prediction, where
the generated item does not appear in the candidate set. To evaluate predictions, we first clean
the LLM outputs (e.g., by removing line breaks) and compare them to the candidate set using
fuzzy string matching, where we retain only high-confidence matches (similarity score > 90).

4.4. Implementation Details

The experiments are conducted locally on a system equipped with two NVIDIA TITAN RTX
GPUs, each with 24 GB of VRAM, running NVIDIA-SMI 535.171.04 and CUDA version 12.2.
We use "Llama-3.1-8B-Instruct” from the LLaMA family [32] as the base LLM model.
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Fine-tuning is carried out using the parameter-efficient LoORA technique [17] with 4-bit quan-
tization [8] and cross-entropy [32] as loss. Given the varying lengths of user histories, we
set the maximum sequence length to 1024 and apply right-side padding to ensure uniform se-
quence lengths. Unless stated otherwise, all experiments use a training setup with three epochs,
AdamW 8-bit optimizer [25], constant learning rate 1e-4, weight decay 0.01, warmup ratio 0.1,
micro batch size 1, and an early stopping mechanism to prevent overfitting. For text generation,
we employ nucleus sampling [15], setting top-p at 0.9 to ensure a balance between diversity and
coherence, and using a temperature of 0.6 to regulate randomness in the output.

4.5. Sensitivity Analysis

In real-world systems, the size of the candidate set can vary. Therefore, we evaluate the per-
formance of the LLM-based approaches across different candidate set sizes. In addition, to
test fine-tuning efficiency in low-data scenarios, we adopt a k-shot training setup, where only
a limited number of samples from the training set are selected for model training. By setting a
relatively small value for k, we assess whether the LLM can efficiently learn recommendation
capabilities under severely limited training data.

5. Results

Table 2 presents the ICR@1 and HR@1 results aggregated over five independent runs, with a
candidate set size of 10. The key observations are as follows: The results demonstrate notable
performance disparities between warm and cold next-item recommendations, suggesting that
the cold-start item problem is also challenging for the fine-tuned LLM model.

In line with existing research [16], [29], ICL outperforms zero-shot prompting. However,
it falls behind the simpler more efficient PairNSP approach, while the proposed fine-tuning
strategy achieves the best performance for both warm and cold-start next-item recommendation.

The low ICR observed in the LLaMA model across all approaches, highlights the effec-
tiveness of adopting a system role and instruction template when aligning LLMs to the recom-
mendation task. While previous research suggests that longer inputs may degrade the reasoning
capabilities of LLMs [22], our findings suggest that ICL remains task-aligned and fine-tuning
significantly enhances compliance behavior, achieving ICR values that are at zero.

Table 2. Performance results aggregated over 5 independent runs.

Strategy WGI (HR@1) CGI(HR@1) Avg (HR@1)
Random 0.103 £ 0.029 0.080 +£0.032  0.092 £0.031
EmbSim (Setlla) 0.289 +0.013 0.122+0.013  0.206 £ 0.013
PairNSP (BERT) 0.267 £0.012 0.182 +£0.017  0.225 +0.015
ItemCLS (BART) 0.112 £0.022 0.121 £0.012 0.117 £0.017
Zero-Shot (LLaMA) 0.289 + 0.007 0.112+£0.020 0.201 £0.014
ICL (LLaMA) 0.343 + 0.022 0.088 +£0.008 0.216 £0.015
Fine-tuned (LLaMA) | 0.401 + 0.053 0.210 £ 0.020  0.306 + 0.037
WGI (ICR@1) CGI (ICR@1) Avg (ICR@1)
Zero-Shot (LLaMA) 0.06 0.05 0.07
ICL (LLaMA) 0.01 0.04 0.02
Fine-tuned (LLaMA) 0.0 0.0 0.0

Table 3 reports the computational cost of the models. Due to their small size, the base-
lines offer minimal computational overhead and faster inference compared to the LLM-based
approaches. ICL is slightly more expensive than zero-shot prompting, potentially due to longer
prompts. Fine-tuning is resource-intensive but its computational cost during inference is com-
parable to that of zero-shot and ICL.
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Table 3. Computational cost of approaches. The base model is LLaMA after applying 4-bit quanti-
zation. Tuned refers to fine-tuned version merged with LoRa weights. GPU Memory is reported
as the peak usage, while GPU APD denotes the average power demand.

Strategy Model Time GPU GPU
Size (GB) | Inference (Min) | Memory (GB) | APD (W)
Inference
EmbSim 1.63 2.17 ~5.19 ~130
PairNSP 0.49 1.34 ~0.76 ~153
ItemCls 1.50 2.17 ~5.66 ~124
Zero-Shot 8.46 30.7 ~11.8 ~282
ICL 8.46 34.0 ~11.0 ~286
Fine-tuned 8.46 21.5 ~14.7 ~259
Fine-Tuning
LoRa Weights | 4.54 | 154.5 | =147 | =316

The results in Figure 2 demonstrate that as the candidate set size increases, the performance
declines across all LLM-based approaches, reflecting the increased difficulty of the task. How-
ever, fine-tuning consistently achieves the highest performance in all scenarios, but starts con-
verging toward the lower performance levels of ICL and zero-shot as the candidate size grows.

ML-1M
Warm-start next-item Cold-start next-item

Zeroshot Zeroshot
—e— ICL —e— ICL
—o— FT - FT

01

\’\‘\

10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Candidate set size Candidate set size

0.0

Fig. 2. Performance using different candidate set sizes.

Figure 3 shows the performance of the fined-tuned models under the k-shot training setting,
aggregated over three independent runs. The results are benchmarked against zero-shot and
ICL, represented by the dotted lines. The performance trend of k-shot training lags behind the
simpler approaches, especially when k is small, but start to improve at higher k values for cold-
start cases. The results suggest that, while the performance of the fine-tuned models improves
as more data becomes available, simpler approaches remain more effective under limited data.

6. Discussion, Limitations and Future Work

The results show that the cold-start problem remains a persistent challenge—even for fine-tuned
LLMs. This is likely because warm-start items can cluster with semantically or behaviorally
similar items, while cold-start items lack signals the model can latch onto.

Consistent with prior work [1], fine-tuning LLMs improves performance for warm-start
recommendations. Our findings show that this effect is also evident in cold-start scenarios.

By fine-tuning on both warm and cold-start next-item cases simultaneously, the model ac-
commodates both scenarios and eliminates the need for separate models for different item types.
Moreover, unlike traditional RS, which must be retrained from scratch to incorporate new data,
this strategy offers a more scalable solution as it allows the model to generalize to completely
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Fig. 3. Performance of fine-tuned models under different k-shot settings aggregated over 3 indepen-
dent runs. The last bar in each diagram represents fine-tuning on the whole dataset.

new users and items that it had not encountered before. Notably, fine-tuning also improves task
compliance, mitigating typical LLM issues such as hallucination [24].

Fine-tuning LLMs requires, however, considerable computational resources, whereas sim-
pler PLM-based methods like PairNSP, built on a BERT backbone, offer strong results with low
overhead and faster inference. We also observe that the performance trend of k-shot training lags
behind the simpler approaches when £ is still small, and that the relative advantage of fine-tuned
models narrows as the candidate space grows.

The findings suggest that although fine-tuning delivers the best overall performance, it
comes with substantial GPU and energy requirements. Therefore, it is important to weigh the
trade-off between performance gains and operational cost. In scenarios like cold-starts, the ac-
curacy improvements achieved through fine-tuning might justify the higher resource investment,
as improved generalization can potentially translate into tangible business value. Still, in set-
tings with limited budgets or only modest performance requirements, lightweight alternatives
might offer a more efficient and cost-effective solution.

Regarding limitations, first, we use the MovieLens dataset, which features rich semantic
content in item titles within a well-curated domain. More complex domains like e-commerce,
especially under cold-start conditions might yield different results. The dataset’s chronological
structure also aligns well with the sequential modeling abilities of LLMs. When user behaviors
are non-sequential, the advantages of sequence-aware models may diminish, or the prediction
task might become less challenging as temporal ordering is no longer critical. Second, relying
on a single model architecture limits the broader applicability of our findings. Thus, while our
results demonstrate promising trends, exploring these dimensions across diverse datasets and
model architectures is necessary to fully assess the generalizability of those approaches.

Future work could investigate decoupling item representation learning from text generation,
as proposed in [18]. Replacing raw titles with semantically aligned ID embeddings could pro-
vide the model with more compact inputs, potentially improving scalability as the candidate set
grows. Another promising direction is the “item tree” approach as suggested in [43], where
the LLM traverses a hierarchical item catalogue to narrow down candidates during inference.
Comparing such LLM-driven retrieval strategies with the retrieve-and-recommend paradigm is
interesting for uncovering trade-offs in efficiency and effectiveness.

7. Conclusion

This paper investigates LLM-based approaches for next-item recommendation within a retrieve-
and-recommend framework across zero-shot prompting, in-context learning, and fine-tuning,
and provides insights into the practical trade-offs in terms of effectiveness and efficiency.
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