
33RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2025 BELGRADE, SERBIA)

Optimizing the DFS-based Strategy for Efficient Execution
of Counting Queries in Machine Learning Applications

Pawel Bratek
Czestochowa University of Technology
Czestochowa, Poland pawel.bratek@pcz.pl

Lukasz Szustak
Czestochowa University of Technology
Czestochowa, Poland lszustak@icis.pcz.pl

Abstract

Counting queries are fundamental operations widely used in machine learning applications.
This paper focuses on optimizing their execution by introducing algorithmic enhancements to
the bitmap-based counting query strategy that relies on a Depth-First Search (DFS) traversal.
The proposed approach is evaluated through a benchmark involving the execution of random
query streams across multiple test datasets. The experimental results demonstrate a significant
speedup, with execution times reduced by factors ranging from 1.26× to 2.25×. Furthermore,
potential directions for further improving the performance of counting queries on modern high-
performance computing (HPC) systems are discussed.

Keywords: counting queries, machine learning, DFS, HPC.

1. Introduction
Many machine learning algorithms rely on counting data records that match specific combinations
of values across selected variables. This seemingly simple operation underpins a broad spectrum
of learning tasks that require estimating probability distributions from data. It is particularly
important in domains where statistical dependencies between variables must be quantified or
structural relationships inferred. For example, counting plays a central role in learning Bayesian
network structures by providing the counts needed to evaluate scoring functions and depen-
dency measures [6]. It also supports the discovery of reliable association rules in transactional
datasets [1], and underlies many classification methods [7]. Moreover, it contributes to feature
representation in deep models [9] and the computation of relevance metrics in information
retrieval systems [8]. The importance of counting queries lies in their computational cost, as in
machine learning applications these operations may account even for more than 90% of total
execution time [5]. Consequently, improving performance of counting is important research area
as it may directly improve performance of many applications.

To formally introduce the concept of counting queries, we begin with basic definitions. Let
D = [D1, D2, . . . , Dm] be a dataset containing m records of n categorical random variables
X1, X2, . . . , Xn. A simple example of a counting query is COUNT((Xi = xi)∧(Xj = xj)∧. . .),
which returns the number of instances in D matching the specified configuration. Considering
database D from Fig. 1a, the result of query COUNT((X1 = 0)∧ (X2 = 0)∧ (X3 = 2)) is 2, as
two observations in D satisfy the query condition. A more advanced class of queries involves
executing a group of consecutive queries over the same set of variables. Let Pa(Xi) (called
parent set) be a subset of X − {Xi}, and consider a query COUNT(Xi |Pa(Xi)). Such query
produces two types of results: Nij counts representing the number of observations where Pa(Xi)
is in configuration j, and Nijk counts with additional conditioning on Xi being in state k. Fig. 2
shows Nijk counts for the query COUNT(X1 | {X2, X3}) in contingency table form.

BRATEK ET AL. OPTIMIZING DFS-BASED STRATEGY FOR EFFICIENT EXECUTION OF COUNTING QUERIES IN ML APPS

0 0 0

0 0 0

X1

0 0 2

0 0 2

1 0 2

0 1 0

1 1 0

D1

D2

D3

D4

D5

D6

D7

X2 X3

D8

D9

D10

1 1 0

1 1 0

2 1 1

(a)

0 0 1

0 1 0

0 0 1

1 0 0

1 0 0

1 0 0

0 0 1

1 0 0

1 0 0

1 0 0

0 1 2

(b)

X 3

X 1 X 1 X 1

X 3

X 1 X 1 X 1

X 2

0 01 2 0 01 2 0 01 2 0 01 2 0 01 2 0 01 2
0 1 2 0 1 2

0 1

2 2 1 1 3 1

N i j k - count of 1s in resulting bitmap of AND(X2=0, X3=0, X1=0)

2 3 4 1
N i j - count of 1s in resulting bitmap of AND(X2=1, X3=0)

(c)

Fig. 1. (a) Database D with three variables. (b) Bitmap representation of X3 variable. (c) Example
of executing query COUNT(X1 | {X2, X3}) over D using the Bitmap strategy.

X1

Pa {X1}={X2 , X3}

0

1

2

00 01 02 10 11 12

2

1 3

1

12

Fig. 2. Contingency table for query
COUNT(X1 |{X2, X3})

An interesting approach for efficient execution of counting
queries, called SABNAtk, is proposed in [5]. The introduced
idea is to abstract counting queries and their context, allowing
Nij and Nijk counts to be aggregated in a streaming manner,
decoupled from downstream processing. SABNAtk provides
two memory-efficient strategies that outperform commonly
used approaches, such as ADTrees and hash tables. The first
is the Bitmap strategy, which encodes variables as bitmaps,
reducing counting to logical AND operations and bit counting.
The second strategy is inspired by the Radix sort and involves
columnar data partitioning.

2. Methods for Optimization of Counting Query Execution
Our previous research [3] showed that the performance of counting query strategies depends
on various factors (e.g., query variables, data complexity), and therefore, no single strategy can
be assumed a-priori to be optimal across all scenarios. To address this, we proposed [4] an
auto-scheduling mechanism that combines the advantages of three individual strategies – Bitmap,
Radix, and Contingency Table – to reduce the query stream execution time. Our approach uses
online regression for classification and for each query from the stream selects the strategy with
the lowest estimated cost. Using Bayesian network learning as a use case, we observed multiple
speedups compared to the best possible individual strategy applied to the entire query stream.

In this work, we aim to further improve the execution efficiency of counting queries. One
of the directions we consider is optimizing individual strategies within the developed auto-
scheduling mechanism. Specifically, we focus on enhancing the performance of the Bitmap
strategy. The core idea behind the Bitmap approach is to represent query variables as bitmaps
(see Fig.1b) and reduce the counting process to performing logical AND operations on bitmaps
and counting the resulting set bits. To compute the counts, the strategy performs a DFS over a
tree that captures all possible configurations of the variable and its parents. A simple example of
such a tree is shown in Fig.1c, where the numbers Nij and Nijk represent the counts produced by
query COUNT(X1 | {X2, X3}). With the memory-efficient SIMD implementation, the Bitmap
strategy has proven [5] to be highly effective in many practical machine learning applications.

ISD2025 BELGRADE, SERBIA

Algorithm 1 QUERY(Xi,Pa, F, b)

1: if |Pa| = 0 then
2: Nij ← |b|
3: Sijk ← 0
4: for v ∈ [0, . . . , ri − 1] do
5: bv ← {p |Di[p] = v}
6: Nijk ← |b ∩ bv|
7: if Nijk > 0 then
8: F (Nijk, Nij)
9: Sijk ← Sijk +Nijk

10: if Sijk = Nij then
11: break for
12: else
13: Xh ← HEAD(Pa)
14: Sij ← 0
15: for v ∈ [0, . . . , rh − 1] do
16: bv ← {p |Dh[p] = v}
17: Nij ← |b ∩ bv|
18: if Nij > 0 then
19: Sij ← Sij +Nij

20: QUERY(Xi, TAIL(Pa), F, b ∩ bv)
21: if Sij = |b| then
22: break for

However, despite these achievements, our analysis re-
veals that performance of the Bitmap strategy can still
be improved by optimizing DFS traversal. As a re-
sult, we propose two methods that significantly reduce
counting query execution time. These improvements
are shown in Algorithm 1, where the original Bitmap
strategy is extended with new lines, highlighting the
two introduced optimizations in different colors. The
first developed method (marked in magenta in Algo-
rithm 1) aims to reduce the number of AND operations
performed in the last layer of a DFS tree. The key idea
behind this optimization is the observation that, for a
given combination of query variables, the count Nij

is always equal to the sum of the corresponding Nijk

values, as illustrated in Fig. 3a. Therefore, by track-
ing the cumulative sum of computed Nijk values for a
given node, we can reduce the number of performed
AND operations. Once this sum reaches Nij , further
bitmap intersections can be skipped, as they would lead
only to zero values for Nijk counts.

To further improve the Bitmap strategy, the second method (marked in blue in Algorithm 1)
focuses on minimizing the number of visited nodes in the entire DFS tree. Unlike the first
optimization, which targets only the final layer of a tree, this method generalizes a similar
principle and applies it across all other layers. This approach relies on the fact that for any node
at layer L, the count Nij is always equal to the sum of the counts computed for its child nodes at
the subsequent layer L+1, as shown in Fig. 3b. Therefore, once the cumulative sum of computed
Nij values at layer L + 1 reaches the Nij value of the parent node at layer L, the remaining
nodes at L+ 1 layer can be skipped, as they would produce only zero values for Nij counts. It is
important to note that removing a node at any level also eliminates the entire subtree rooted at
that node, including all its children. As a result, this pruning mechanism significantly reduces the
number of visited nodes and improves the overall efficiency of the counting process.

X i

N i j=7

4 12

∑ N i j k=N i j

(a)

X b X b

N i j=4 N i j=6

∑ N i j (L+1)=N i j (L)

N i j=10
layer L

layer L+1
X b

X a

(b)

Fig. 3. (a) A single leaf node of the DFS tree built for an example counting query. The cumulative
sum of the first three Nijk values matches Nij , allowing the last two bitmap intersections to be
skipped. (b) An example internal node in the DFS tree with three children. The third child node
and its subtree can be pruned as the cumulative sum of Nij values at layer L+ 1 reaches Nij

value of the parent node at layer L.

BRATEK ET AL. OPTIMIZING DFS-BASED STRATEGY FOR EFFICIENT EXECUTION OF COUNTING QUERIES IN ML APPS

Table 1. Speedups from optimizations in the Bitmap strategy on the random query stream benchmark

Dataset n
Speedup

m = 1K m = 10K m = 100K m = 1M

Child 20 1.26 1.35 1.35 1.30
Insurance 27 1.24 1.30 1.33 1.30
Mildew 35 1.48 1.62 1.76 2.25
Barley 48 1.44 1.54 1.56 1.60
Pathfinder 109 1.53 1.57 1.66 1.53

To evaluate the effectiveness of the proposed methods, we conducted a benchmark based on
processing a stream of randomly sized counting queries. Tests were performed on several datasets
commonly used in machine learning [2], differing in the number (n) of variables. Each dataset
was evaluated in four versions with varying numbers of observations (m ranging from 1K to 1M),
as dataset size is one of the key factors influencing query execution time. For each configuration,
the same query stream was executed twice – once using the original Bitmap strategy and once
with the optimized version. Table 1 presents the resulting speedups, calculated as the ratio of
unoptimized to optimized runtime. The observed values range from 1.24× to 2.25×, with an
average of 1.5×. Given the scale of real-world machine learning applications, where query
volumes often reach billions, such improvements can significantly enhance efficiency.

Currently, we are working on further tailoring counting process to modern computing architec-
tures. One direction involves developing methods that fully utilize current-generation ccNUMA
systems. At the same time, we are exploring potential of RISC-V architecture for efficient query
processing. These efforts aim to support the development of scalable, architecture-aware data
processing techniques, increasingly important in the design of modern information systems.

References
[1] Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in

large databases. In: ACM SIGMOD Conf. on Management of Data. pp. 207–216 (1993)

[2] Bayesian network repository. https://www.bnlearn.com/bnrepository

[3] Bratek, P., Szustak, L., Zola, J.: Parallelization and auto-scheduling of data access queries in
ML workloads. In: Euro-Par 2021: Parallel Processing Workshops (2022)

[4] Bratek, P., Szustak, L., Zola, J.: Parallel auto-scheduling of counting queries in ML applica-
tions on HPC systems. In: Euro-Par 2023: Parallel Processing Workshops (2024)

[5] Karan, S., Eichhorn, M., Hurlburt, B., Iraci, G., Zola, J.: Fast counting in machine learning
applications. In: Uncertainty in Artificial Intelligence (2018)

[6] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press (2009)

[7] Quinlan, J.: Bagging, boosting, and C4.5. In: AAAI Innovative Applications of Artificial
Intelligence Conferences. pp. 725–730 (1996)

[8] Ramos, J.: Using TF-IDF to determine word relevance in document queries. In: Instructional
Conference on Machine Learning. pp. 133–142 (2003)

[9] Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Int. Conference on Artificial
Intelligence and Statistics. pp. 448–455 (2009)

