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Abstract 

This work presents an intelligent support system for a novel, non-destructive (NDT), 2D 

method to identify parameters of reinforced concrete (RC) structures. Using association 

rule analysis (ARA), it detects relationships between signal changes and structure 

parameter modifications, identifying signal parameters influenced by a single structural 

parameter. Multitask learning is used to identify concrete cover thickness, reinforcing bar 

diameter, and steel class. Features are extracted from the three spatial components of 

magnetic induction via ACO decomposition, which is suited for creating complex 

databases. Genetic algorithms improve noise resilience in function approximation. Results 

are shown as Fuzzy Rough Sets. Three vertically placed sensors, combined with AI, enable 

precise identification of parameters, with changes in one not affecting others.  

Keywords: Signal Processing, Fuzzy Logic, Association Rules Analysis ARA, ACO 

decomposition, Genetic Algorithms GA, Multisensory, spatial analysis MSA, 

Nondestructive Testing NDT, rebars, Reinforced Concrete. 

1. Measuring System and Samples 

Magnetic non-destructive testing systems feature a straightforward design, as illustrated in 

Fig. 1.  

 
a) 

 
b) 

Fig. 1. The system elements: a) positioning elements on the concrete sample: M1 and M2 magnets, and S transducer, 

b) the magnetic transducer assembled with three HMC5883L sensors placed one on top of the other. 
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The measurement system has four subsystems: an excitation subsystem, a positioning 

robot, a magnetic field sensor (HMC5883L), and a data acquisition subsystem. The 

excitation subsystem placed two stationary neodymium magnets on the sample surface 

above the rebar (Fig. 1a). The positioning subsystem (XYZ scanner) moved the magnetic 

sensor (Fig. 1b) perpendicular to the rebar. The sensors captured the magnetic induction 

components (Bx, By, Bz) and sent data to a computer (data acquisition subsystem). Fig. 1a 

shows the components of the specimen. The sensors are 10 mm apart (Fig. 1b). The 2D 

measurement compares signals from three sensors at the same distance. The magnets 

(Fig. 1a) are set in an SPM (same pole magnetization) configuration [1]. 

The RC structures have three main parameters: concrete cover thickness (h), 

reinforcing bar diameter (D), and rebar steel class. Samples had h from 20 to 70 mm in 

10 mm steps, typically 20-50 mm in RC structures. Two rebar diameters, D10 (10 mm) and 

D12 (12 mm), and three alloy classes—AI (max ductility, min hardness), AIII (low ductility, 

high hardness), and AIIIN (min ductility, max hardness)—were tested. 

2. Results 

2.1. Association Rules Analysis (ARA) and Identification of Alloy Class 

The basics of 2D identification were introduced in [2]. Features of waveforms were 

extracted using ACO decomposition [3]. Then, association rule analysis (ARA) helps 

identify how changes in various structural parameters affect the waveform. Examples of 

ARA usage on signals are presented in [4-6]. For multitask identification, isolating signal 

features that depend solely on a single parameter can significantly enhance accuracy, 

thereby making the identification of each parameter independent. ARA helps discover 

these specific rules. The rules are shown in Table 1. 

Table 1. Confidence of association rules, scan along the x-axis 

 x-axis 

spatial component Bx spatial component By spatial component Bz 

A C O A C O A C O 

h ↑ ↓100 ↓100 (-)100 ↓100 ↓100 ↓100 ↓100 ↓100 ↑56 

D ↑ ↑100 ↓58 (-)84 ↑100 ↓82 ↑100 ↓89 ↓62 ↑100 

class ↑ ↑94 (-)76 ↑92 ↓52 (-)58 ↓57 ↑99 (-)61 ↑100 

 

ARA revealed that the steel class affects only the offset attribute O for the spatial 

component of magnetic induction (Bx). Changes in other structural parameters, such as 

concrete cover thickness (h) and rebar diameter (D), do not affect the outcome, making the 

identification simple and independent. Patterns for h and D identification still need to be 

discovered. 

Similar analysis can be conducted based on the scans along the z-axis (Fig. 1a), as 

presented in Table 2. 

Table 2. Confidence of association rules, scan along the z-axis 

 z-axis 

spatial component Bx spatial component By spatial component Bz 

A C O A C O A C O 

D ↑ ↑100 (-)84 (-)84 ↑100 ↓100 ↑100 ↓89 ↓100 ↑100 

class ↑ ↑94 ↓92 ↑92 ↓52 ↓57 ↓57 ↑99 ↓100 ↑100 

2.2. Concrete Cover Thickness 

Concrete cover thickness is a continuous parameter that affects all three ACO attributes 

(amplitude, correlation, and offset). ARA analysis reveals that as h increases, the three 

magnetic induction components decrease proportionally, as illustrated in Fig. 2b. Using all 

three waveforms (Bx, By, Bz) instead of one can strongly improve the quality of the 

identification. The alloy class and rebar diameter do not affect the shape, allowing for 

pattern-based, independent identification. The genetic algorithm was used to establish the 

link between the shape of normalized waveforms (Fig. 7) and h. From these measurements, 

the cover thickness is determined using Equation (1), which applies to all spatial 



ISD2025 BELGRADE, SERBIA 

components. The shape of the B curves was confirmed with numerical simulations. 

{

𝐵1 = 12.03 ∙ ℎ−0,6181 − 0,8814              

𝐵2 = 12.03 ∙ (ℎ + 𝑛)−0,6181 − 0,8814  

𝐵2 = 12.03 ∙ (ℎ + 2𝑛)−0,6181 − 0,8814

       (1) 

 

The B1 is the amplitude from the sensor closest to the surface (first layer); B2 is from the 

sensor 10 mm away (second layer); B3 is from 20 mm away (third layer); n is the sensor 

distance (10 mm), and h is the concrete cover thickness. Fig. 2a shows the fit of the 

approximation to the data. 
 

 
a) 

 
b) 

Fig. 2. Normalized relationship between cover thickness and signal amplitude: a) comparison of measurements, 

simulation results, and approximation, b) comparison of spatial components B.  

2.3. Rebar Diameter 

The diameter of the rebars affects all ACO parameters of the magnetic induction's spatial 

components and is a discrete parameter. Identifying it is more challenging than determining 

the alloy class of the rebars or the thickness of the concrete cover. The pattern found with 

ARA that allows for independent identification is shown in Fig. 3. 

 

 
Fig. 3. Two-dimensional identification of rebar diameter: a) D10 identification, b) D10 relationship between the 

maximum value position on the x-axis and h, c) D12 identification, d) D12 relationship between the maximum 

value position on the x-axis and h. 
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The two-dimensional identification of rebar diameters also uses signals from sensors 

placed in different layers. The Xmax refers to a set of attributes indicating the position on 

the x-axis corresponding to a Bx waveform's maximum value at a specific h. For example, 

Xmax(h20) represents the distance between position X0, where the waveforms intersect 

(Fig. 3), and the x position of the maximum value of the waveform measured for 

h = 20 mm. The Δx signifies the difference between successive Xmax values; for instance, 

Δx = Xmax(h30) − Xmax(h20) or Δx = Xmax(h50) − Xmax(h40). 

As the thickness of the concrete cover increases (or as the sensor moves along the z-

axis), the position of the maximum value (Xmax) changes accordingly. This shift follows a 

linear relationship with h (Fig. 3b and Fig. 3d). However, experimental results indicate that 

the step depends on the diameter of the rebar. The Δx value remains constant at 

approximately 10 mm for D10 (diameter of 10 mm) and 12 mm for D12. Due to the 

symmetry of the waveforms, a similar relationship can be identified for Xmin.  

The Δx attribute is suitable for identifying rebar diameters since it remains unaffected 

by concrete cover thickness and rebar class. However, the flattening seen near the 

maximum waveform value and noise can considerably impact the attribute's value. To 

mitigate noise interference, measurements can be taken multiple times, in various locations 

simultaneously, or by utilizing both halves (positive and negative) of the waveform. 

Additionally, using filters is advised. 

 

3. Identification Model 

With the implementation of AI methods and 2D measurement techniques, identifying all 

parameters has become independent, which is extremely important given the lack of 

learning data. The offset value in the Bx component determines the steel class, while the 

other parameters depend on the previously discussed 2D relationships. Subsequently, an 

analysis was conducted based on rough set theory, and a fuzzy system was created by 

modeling membership functions in alignment with upper and lower approximations, which 

is more effective for rare data than classic machine learning methods [7]. Example results 

are presented in Fig. 4. 

 
a) 

 
b) 

Fig. 4. Example membership functions: a) rebar diameter, b) concrete cover thickness. 

Statistical analysis revealed that identifying cover thickness can be more precise than 

experiments. The standard deviation indicates that identification accuracy could be within 

1-2 mm.  

The Two-dimensional (2D) analysis enables the integration of scans along the x and z 

axes (presented in Tables 1 and 2), unlocking entirely new possibilities. The previously 

discussed identification of cover thickness can be performed across all spatial components 

of magnetic induction (the least reliable results occur with the By component, where noise 

and distortions significantly impact due to its low amplitude). In this tested case, the 

confidence level is 100%, indicating that even much thinner cover layers can be detected, 

and alterations to other structural parameters do not affect the outcome. 

D10 D12 h30 h31 h32 
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In diameter identification, the method demonstrates a confidence level of 93% when 

considering typical cover thickness, while other parameters, such as cover thickness and 

rebar class, do not influence the outcome. 

4. Conclusions 

Artificial intelligence techniques effectively support 2D measurements. ARA 

association rule analysis identifies measurement features based on a single parameter, 

enhancing reliability and robustness against unexpected factors. This is vital in NDT, 

where building a comprehensive database is difficult. Limited training data prompted ACO 

decomposition, leading to a simple yet effective identification system grounded in fuzzy 

rough set theory. These methods also minimize noise influence. Further in-depth research 

is needed to explore their limitations, but the new measurement technique and AI assistance 

results are promising and yield reliable predictions. 
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