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Abstract

This study empirically evaluates the performance of Chronos, a recent foundation model pre-
trained on a large corpus of time series data, for the task of daily stock index forecasting. Us-
ing a rolling window framework on historical Nasdaq-100 and S&P 500 data from 1995 to
early 2025, we compare zero-shot and fine-tuned Chronos variants against a diverse set of es-
tablished forecasting methods, including statistical benchmarks (AutoARIMA, ETS), standard
deep learning models (DeepAR, DLinear, SimpleFeedForward), other Transformer-based ar-
chitectures (PatchTST), and ensemble approaches. Our results, based on standard forecasting
metrics and simulated trading performance, indicate that zero-shot Chronos provides compet-
itive forecasting accuracy. It is statistically comparable to the best traditional methods, but its
derived trading performance lags top benchmarks. The fine-tuned Chronos variant statistically
underperformed the zero-shot version in forecast accuracy. These findings highlight the poten-
tial of foundation models and underlines the significant challenges in effective fine-tuning.

Keywords: Time Series Forecasting, Foundation Models, Chronos, Machine Learning, Algo-
rithmic Trading

1. Introduction

Financial time series forecasting is a cornerstone of quantitative finance, crucial for portfolio
allocation, risk management, and algorithmic trading strategy development. However, it is diffi-
cult to achieve correct predictions due to the noisy, non-stationary, and often regime-dependent
nature of financial markets [16]. Traditional econometric models like the ARIMA and GARCH
families often struggle to capture complex non-linear dynamics [4]. Standard machine learning
and deep learning approaches, including Recurrent Neural Networks (RNNs) like Long Short-
Term Memory (LSTM) [7] or Convolutional Neural Networks (CNNs), have shown promise but
typically require significant task-specific training data and careful hyperparameter tuning.

Recently, the paradigm of large pre-trained foundation models, highly successful in Natural
Language Processing (NLP) and Computer Vision, has been extended to time series analysis
[2]. These models are trained on vast, diverse datasets and aim to provide strong zero-shot
or few-shot forecasting capabilities across various domains. Chronos [1] represents a state-of-
the-art example, utilizing language model architectures (specifically TS) to process tokenized
time series data and perform probabilistic forecasting. By learning general temporal patterns
from a massive corpus, Chronos potentially offers a robust alternative to models trained only
on specific target series. Despite the theoretical appeal, the empirical performance of such
foundation models, particularly in the challenging domain of daily financial forecasting, requires
thorough investigation.

This paper addresses this gap by systematically comparing Chronos models against a range
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of established forecasting techniques. Specifically, using historical daily data for the Nasdaq-
100 and S&P 500 indices (from 1995 to early 2025), we evaluate the performance of Chronos
in two modes: zero-shot and simply fine-tuned (using default settings without extensive hyper-
parameter optimization) on the target index data. We employ a rolling walk-forward evaluation
framework to determine the relative effectiveness of Chronos, both as an off-the-shelf tool and
with default automated fine-tuning, compared to established specialized and baseline models in
finance.

Our experiments show that Chronos zero-shot variant achieves forecasting accuracy on par
with the best traditional models, whereas simply fine-tuning Chronos with default parameters
does not improve performance and even underperforms the zero-shot model. In terms of trading
outcomes, Chronos forecasts yield only moderate returns, falling short of the top benchmark
strategies. These results highlight the potential of foundation models for forecasting while em-
phasizing the challenges in effectively fine-tuning them for complex financial tasks.

The remainder of this paper is structured as follows: Section 2 briefly reviews related
work on financial forecasting models and foundation models for time series. Section 3 de-
tails the methodology, including data, compared models, evaluation setup, and metrics. Section
4 presents the empirical results and analysis. Section 5 concludes the study, highlighting limita-
tions and potential avenues for future research.

2. Related Work

Time series forecasting is a mature field with established statistical methods like ARIMA and
Exponential Smoothing (ETS) serving as strong baselines [10]. However, capturing volatil-
ity changes and the complex non-linearities inherent in financial data often requires more ad-
vanced approaches [16]. Deep learning models, including RNNs, LSTMs [7], and specialized
architectures like DeepAR [14] and selected Transformer-based model, PatchTST [13]), have
demonstrated significant improvements in accuracy for specific forecasting tasks, although un-
der task-specific training and hyperparameter tuning.

The recent emergence of large pre-trained foundation models offers an opportunity for
time series analysis [2]. These models aim to learn universal temporal patterns from vast
datasets, enabling effective zero-shot or few-shot forecasting. Examples include TimeGPT [8]
and TimesFM [5], which have shown competitive zero-shot performance against traditional and
deep learning models on diverse benchmarks.

This study focuses specifically on Chronos [1], a family of T5-based foundation models
pre-trained by tokenizing time series values. Their success in zero-shot forecasting motivates
evaluation in finance. Preliminary applications, such as [17] testing Chronos on stock returns,
suggest potential for identifying weak predictive signals. However, practical profitability re-
mains limited, and simpler specialized models often still performed better. Notably, that study
highlighted a performance gap between using Chronos in zero-shot mode versus fine-tuning it
on financial data.

Our work extends this line of study by systematically comparing publicly available Chronos
variants (both zero-shot and using default fine-tuning settings via AutoGluon) against a curated
set of established statistical, deep learning, and Transformer baselines on major stock indices
(Nasdag-100, S&P 500). With a rolling-window framework we add empirical evidence to the
ongoing evaluation of foundation models in quantitative finance.

3. Methodology

3.1. Data and Preprocessing

This study utilizes daily historical data for two major US stock indices: the S&P 500 ("GSPC)
and the Nasdaq-100 ("NDX). The data spans approximately 30 years, from January 1995 to
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early 2025, sourced from Yahoo Finance. These indices provide challenging test cases, the
Nasdag-100 known for its technology focus and higher volatility, while the S&P 500 represents
the broader US market. Daily closing prices F; are transformed into logarithmic return rates
ry = log(P;) — log(P;—1) to improve stationarity. All analysis uses a business day frequency.
Standard preprocessing, including feature scaling within each training window, is handled in a
way to prevent lookahead bias.

3.2. Forecasting Models Compared

We compare the performance of Chronos foundation models against several established baseline
and state-of-the-art methods.

¢ Chronos [0-Shot]: The Amazon Chronos model evaluated using its pre-trained weights
without any fine-tuning on the target index data [1].

* Chronos [Fine-tuned]: We follow Chronos authors [1] to fine-tune the pre-trained model
using suggested fine-tuning settings: learning rate = 1le=, steps (number of gradient up-
date steps) = 1000, batch size = 32. (These default training parameters were chosen to
mimic an out-of-the-box fine-tuning scenario without extensive hyperparameter search.)

* Statistical Baselines: AutoARIMA and ETS, representing classical econometric ap-
proaches, with parameters automatically selected [10].

» Standard Deep Learning Models: DeepAR [14], DLinear [18], and a SimpleFeedFor-
ward (MLP) network.

* Transformer-Based Model: PatchTST [13], a recent high-performing Transformer ar-
chitecture for time series.

e Tabular/Ensemble Models: RecursiveTabular and WeightedEnsemble, both generated
by AutoML frameworks like AutoGluon library [15], which was used for model fitting
and prediction.

3.3. Evaluation Framework

A rolling walk-forward validation procedure ensures robust out-of-sample performance assess-
ment [3]. The data for each index is iterated through using sequential, non-overlapping win-
dows:

* Training Window Length (7},4;,): 150 business days (approx. 7 months).
* Testing (Prediction) Window Length (7}..;): 50 business days (approx. 2.5 months).

 Step Size: 50 business days (non-overlapping test sets).

Models are trained (or applied zero-shot) on 13,4y, to forecast the subsequent 7}.¢¢ period. The
window then slides forward by the step size for retraining and re-evaluation.

3.4. Performance Metrics

Model performance is evaluated using both standard forecast accuracy metrics and metrics de-
rived from a simple trading simulation. For the trading evaluation, we consider a naive long-
short strategy: go long (buy) if the model predicts an upward move above a small threshold, go
short (sell) if it predicts a sufficiently negative move, or stay flat if the predicted return is within
the threshold. We assumed a signal threshold 7 = 0.1% (in log-returns) and zero transaction
costs for this hypothetical strategy. Appropriate statistics were selected based on [11]. Table 1
provides the definitions of these metrics and their interpretation.
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Metric Abbrev. Formula Additional Information

Forecast Accuracy Metrics

Mean Absolute Error MAE L3y — ] Lower is better.

Root Mean Squared Error RMSE \/ ﬁ S — )2 Lower is better.

Directional Accuracy DA %(sign(7) == sign(ry)) Higher is better (accuracy of sign prediction).

Mean Abs. Scaled Error MASE MAE /M AEnqve train Error relative to in-sample naive forecast; <1 is good. [9]
Avg. Pinball Loss AvgPinball mean(PinballLoss,) Average loss across quantiles [0.1,..,0.9]. Lower is better. [12]
Diebold-Mariano Stat. DM (See [6]) Tests significance of loss difference between models.

Trading Simulation Metrics (Threshold T = 0.001, Cost ¢ = 0.0)

Annualized Return aRC (TT(1+ Tszat?t>)252/N -1 Compounded annualized strategy return.
Annualized Std. Dev. aSD V252 x std(7'strat,t) Annualized volatility of strategy returns.
Information Ratio IR aRC/aSD Sharpe Ratio (risk-free rate = 0).

Sortino Ratio Sortino aRC/aSDaownside Uses std. dev. of negative strategy returns only.
Maximum Drawdown MD min(Equity;/ max;<; Equity; — 1) Max peak-to-trough equity decline (negative).
Calmar Ratio Calmar  aRC/|MD| Return relative to max drawdown.

Max Loss Duration MLD max(duration below peak)/252 Longest time (years) to recover previous peak.
Average Max Drawdown AMD mean(M Dyeariy) Mean of yearly maximum drawdowns.
Number of Trades N Trades ) |Asignal,| Count of signal changes.

Table 1. Performance statistics definitions.

r¢=actual log return, 7*;=forecast log return, rs¢rq¢,t=strategy daily log return. B&H strategy used as benchmark.

4. Results

This section presents the empirical results comparing the zero-shot and fine-tuned forecasting
performance of Chronos against baseline and state-of-the-art models on daily Nasdag-100 and
S&P 500 log-returns (1995-2025) using the rolling window framework.

4.1. Overall Trading Performance

Table 2 and Table 3 summarize the key trading performance metrics over the entire 30-year
period for Nasdag-100 and S&P 500, respectively, based on the directional strategy with a 0.1%
signal threshold and zero transaction costs.

Model N Trades aRC (%) aSD (%) IR (Sharpe) Sortino MD (%) Calmar
WeightedEnsemble 2419 16.7 27.7 0.60 0.81 -50.2 0.33
ETS 116 15.2 27.7 0.55 0.71 -59.7 0.25
SimpleFeedForward 1129 14.3 25.3 0.57 0.67 -59.6 0.24
Chronos[0-shot] 962 13.7 24.2 0.56 0.58 -57.7 0.24
BuyHold 1 12.7 27.7 0.46 0.60 -87.9 0.14
DeepAR 2460 5.5 25.9 0.21 0.26 -71.2 0.08
Chronos[Fine-tuned] 2335 5.0 26.7 0.19 0.24 -79.8 0.06
DLinear 3947 4.5 26.6 0.17 0.22 -65.4 0.07
RecursiveTabular 3266 1.5 27.2 0.05 0.07 -86.7 0.02
AutoARIMA 424 0.8 18.1 0.05 0.03 -76.4 0.01
PatchTST 4045 -0.1 26.5 -0.00 -0.00 -74.4 -0.00

Table 2. Overall Trading Performance Metrics (Nasdaq-100, Thresh=0.001, Cost=0.0)

The trading simulation results highlight interesting differences between the indices. For
the Nasdag-100 (Table 2), several active strategies, WeightedEnsemble, ETS, SimpleFeedFor-
ward, and Chronos[0-shot], outperformed the B&H benchmark on both raw (aRC) and risk-
adjusted (IR, Sortino, Calmar) metrics. Conversely, for the S&P 500 (Table 3), the B&H strat-
egy remained superior across most metrics. The best active models based on IR for SP500 was
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Model N Trades aRC (%) aSD (%) IR Sortino MD (%) Calmar
BuyHold 1 8.9 190 047 0.59 -59.8 0.15
SimpleFeedForward 1434 5.5 17.1 032 0.34 -45.8 0.12
Chronos[0-shot] 991 5.2 133 0.39 0.33 -34.2 0.15
DeepAR 2759 4.7 164  0.29 0.32 -64.9 0.07
Chronos[Fine-tuned] 2414 2.4 17.1  0.14 0.17 -61.4 0.04
WeightedEnsemble 2423 2.3 149 0.16 0.15 -55.3 0.04
ETS 273 2.0 114 0.17 0.12 -33.7 0.06
DLinear 4114 1.2 17.6  0.07 0.08 -67.2 0.02
RecursiveTabular 3284 0.8 18.5 0.04 0.05 -60.8 0.01
AutoARIMA 403 0.5 84 0.06 0.03 -49.0 0.01
PatchTST 4305 -0.2 17.3  -0.01 -0.01 -78.4 -0.00

Table 3. Overall Trading Performance Metrics (SP500, Thresh=0.001, Cost=0.0)

Chronos[0-shot], which achieved competitive risk-adjusted returns (IR=0.39 vs 0.47 for B&H).
The Chronos[Fine-tuned] version performed worse than the zero-shot one, however, it was more
active in the market (2335 vs 962 and 2414 vs 991 trades respectively).

4.2. Forecast Accuracy Comparison

ItemID Model MAE RMSE DA (%) MASE AvgPinballLoss

Nasdag-100
ETS 0.01195 0.01585 53.95 1.13 0.00438
AutoARIMA 0.01197 0.01585 73.78 1.13 0.00437
Chronos[0-shot] 0.01201 0.01594 53.35 1.30 0.00524
WeightedEnsemble 0.01214 0.01608 53.52 1.15 0.00447
SimpleFeedForward  0.01238  0.01637 53.82 1.17 0.00468
DeepAR 0.01293 0.01698 52.44 1.22 0.00511
PatchTST 0.01364 0.01779 50.32 1.29 0.00536
Chronos[Fine-tuned] 0.01377 0.01803 51.28 1.13 0.00561
DLinear 0.01393  0.01809 50.89 1.31 0.00544
RecursiveTabular 0.01923  0.02469 50.23 1.82 0.01355

S&P 500
Chronos[0-shot] 0.00795 0.01089 52.81 1.74 0.00365
AutoARIMA 0.00796 0.01089 73.93 1.50 0.00301
SimpleFeedForward  0.00816 0.01115 53.47 1.54 0.00319
WeightedEnsemble 0.00833 0.01148 51.98 1.57 0.00316
DeepAR 0.00852 0.01149 51.64 1.60 0.00346
ETS 0.00877 0.01280 53.14 1.65 0.00337
PatchTST 0.00913 0.01226 50.76 1.72 0.00369
Chronos[Fine-tuned] 0.00924 0.01246 50.73 1.50 0.00376
DLinear 0.00930 0.01236 51.04 1.75 0.00368
RecursiveTabular 0.01311 0.01728 50.25 2.47 0.00943

Table 4. Overall Forecast Accuracy Metrics (1995-2025, Daily Log-Returns)

We next examine the raw forecast accuracy using MAE and RMSE, alongside directional
accuracy (DA) and MASE (Table 4). It reveals that the models with the best trading perfor-
mance (e.g., WeightedEnsemble, SimpleFeedForward on Nasdaq) do not necessarily translate
into the lowest forecast errors. Statistical models like AutoARIMA and ETS often achieve
lower MAE/RMSE, particularly for the SP500. Chronos (0-shot variant) demonstrates com-
petitive MAE/RMSE, ranking among the best models, but its DA is only slightly above 50%.
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The MASE values, generally above 1, indicate that most models struggle to consistently outper-
form a simple naive persistence forecast in terms of MAE. The low DA for AutoARIMA seems
anomalous, it had often zero forecast.

Probabilistic forecast accuracy, represented by Average Pinball Loss, largely mirrors the
RMSE rankings. Statistical models and simpler DL ensembles tend to show better calibration
across quantiles compared to the more complex Transformer models or Chronos variants in this
evaluation.

4.3. Statistical Significance of Forecast Errors

Model 1 Model 2 DM (MAE) p-MAE DM (MSE) p-MSE
Chronos[Fine-tuned] SimpleFeedForward 19.02  0.000%** 6.74  0.000%**
Chronos[Fine-tuned] ETS 12.27  0.000%** -3.62  0.000%**
Chronos[Fine-tuned] DeepAR 11.13  0.000%*** 494  0.000%**
Chronos|[Fine-tuned]  Chronos[0-shot] 24.43  0.000%** 6.83  0.000%**
Chronos[0-shot] SimpleFeedForward -9.65  0.000%*** -1.50 0.133
Chronos[0-shot] ETS =547  0.000%** -4.10  0.000%**
Chronos[0-shot] DeepAR -17.01  0.000%** -1.35 0.176

Table 5. Diebold-Mariano Test Results (Selected Pairs, Nasdag-100). Positive DM stat indicates
Model 1 loss is higher (worse). *** p<0.001, ** p<0.01.

To check whether the observed differences in forecast accuracy are statistically significant,
we perform Diebold-Mariano tests that compare loss differentials (MAE and MSE) between se-
lected model pairs (Table 5). The results show that the fine-tuned Chronos variant produces fore-
casts that are statistically significantly less accurate (higher MAE and MSE loss) than the zero-
shot variant (Chronos[0-shot]) and SimpleFeedForward (p < 0.001 for both MAE and MSE). It
also performs significantly worse than DeepAR (p<0.001). It appears statistically worse than
ETS based on MAE, but surprisingly better based on MSE loss (DM stat is negative), suggesting
complex error distribution.

Comparing the zero-shot Chronos to others, we find it is significantly more accurate (lower
loss) than SimpleFeedForward and DeepAR based on MAE, but not significantly different based
on MSE. There is no statistically significant difference in accuracy between zero-shot Chronos
or ETS.

In summary, these tests suggest that the default fine-tuning procedure significantly degraded
the forecasting performance of the Chronos model, rather than improving it, highlighting the
importance of more robust hyperparameter optimization.

4.4. Performance Across Markets

Finally, we examine the performance of the models in different markets. Figures 1 and 2 display
the overall equity curves for all models on the Nasdag-100 and S&P 500, respectively.

Overall, the results illustrate both the promise and the limitations of using a large pre-trained
model like Chronos for daily stock index forecasting. In the following section, we discuss the
key findings, practical limitations, and avenues for future work based on these results.

5. Discussion and Conclusion

5.1. Findings

Our empirical evaluation provides several key findings. First, foundation models like Chronos
can achieve forecasting accuracy comparable to top traditional methods. Chronos[0-shot] error
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Equity Curves: NASDAQ100 (Overall, Log Scale, Thresh=0.001, Cost=0.0)
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rates (MAE, RMSE, Pinball Loss) were competitive with the best statistical models and deep
learning benchmarks on both indices. However, Chronos fine-tuning (with default parameters)
did not yield improvement - in fact, this version significantly underperformed the zero-shot vari-
ant in forecast accuracy, as confirmed by statistical tests. This counterintuitive result highlights
the difficulty of effectively adapting a large pre-trained model to a specific financial time series
without extensive tuning.

Second, in terms of trading performance, we found that the zero-shot Chronos strategy was
among the better-performing active strategies (it achieved the highest Information Ratio for the
S&P 500 and was among the top few for Nasdag-100), yet it still outperformed by simpler sta-
tistical models (ETS, AutoARIMA). The fine-tuned Chronos, meanwhile, lagged substantially
in trading outcomes.

In conclusion, foundation models like Chronos offer promising capabilities for time series
forecasting, but their zero-shot application in complex domains like daily financial markets re-
quires careful benchmarking.

5.2. Limitations

This study has several important limitations. We focused on only two large stock indices
(Nasdag-100 and S&P 500) at a daily frequency, which may not generalize to other assets or
higher-frequency trading. We evaluated only two configurations of Chronos (zero-shot and one
particular fine-tuning setting), without exploring more extensive hyperparameter tuning. In ad-
dition, we used a single simple trading strategy to judge economic performance, assuming zero
transaction costs.

5.3. Future Work

Future research could build on these findings in several ways. Broader evaluations could be con-
ducted on different markets and other asset classes and at different frequencies (intraday data).
Future studies can create sophisticated strategies based on foundation model’s probabilistic out-
puts and compare them against more complex trading benchmarks. Additionally, they could
improve the fine-tuning process for foundation models. Finally, as foundation models for time
series evolve, investigating model interpretability and trustworthiness in forecasting financial
markets will be important for real-world adoption.
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