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Abstract

Technical debt management is increasingly critical in modern software systems, where organi-
zations grapple with complex digital infrastructure. This paper aims to explore innovative data
processing algorithms and frameworks that leverage generative AI to improve the diagnosis and
management of technical debt problems. We conduct a literature review and synthesize findings
on the application of generative AI in technical debt management, focusing on algorithmic ap-
proaches and frameworks designed for this purpose. Analysis reveals that generative AI-driven
methods show promise in enabling more accurate diagnosis of technical debt, particularly in au-
tomating the identification of complex patterns and generating targeted remediation strategies.
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1. Introduction
In rapidly changing technological environment, organizations must constantly adapt their IT
systems to keep up with the growing demands of the market and users. This constant devel-
opment is often associated with a phenomenon known as "technical debt", which occurs when
design decisions made under time and cost pressure lead to suboptimal solutions. Technical
debt, although inevitable in short-term projects, can lead to significant challenges in the long
term, affecting the performance, scalability, and maintenance of systems [1, 2]. In response to
these challenges, the development of advanced data processing algorithms and data structures
is becoming increasingly important. In this context, the role of generative artificial intelligence
(GAI) begins to play a key role. GAI, capable of learning and generating new patterns, offers in-
novative approaches to solving problems related to technical debt [1], [3]. Generative AI can be
used to automate the processes of diagnosing and assessing technical debts, which contributes to
faster and more precise detection of areas requiring intervention. By analyzing the current state
of systems and predicting potential failure points, GAI supports the creation of more informed
decisions regarding investments in development of IT infrastructure, also more complementary
analysis of technical debt [2, 3]. This paper aims to explore the importance of modern data
structures and processing algorithms in context of managing technical debt using generative AI.

2. Technical debt management as a software engineering process
Technical debt refers to the process in software engineering where developers make expedient
decisions during software development – often to meet immediate deadlines or to quickly ad-
dress urgent requirements – which may result in less optimal code structures or design choices
[1]. These shortcuts and compromises can lead to future maintenance challenges, decreased
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software quality, and increased development costs, collectively termed as technical debt. Effec-
tive technical debt management involves identifying, measuring, prioritizing, and systematically
addressing debt items to balance immediate benefits against future risks and costs.

Types of technical debt. Technical debt can be categorized into several distinct types,
each requiring different management strategies [3]: (1) Code debt: arises from poorly writ-
ten or unoptimized code, often characterized by complex structures, duplication, and lack of
proper documentation. (2) Architectural debt: results from suboptimal architecture decisions
that might hinder scalability, flexibility, or adaptability to future requirements. (3) Design debt:
occurs due to inadequate or rushed design decisions that impact the maintainability and clarity
of the software. (4) Documentation debt: refers to insufficient, outdated, or incorrect docu-
mentation, making the software difficult to understand and maintain. (5) Testing debt: develops
when there is inadequate testing coverage, resulting in undiscovered bugs and vulnerabilities
that complicate future changes.

Lifecycle of technical debt. Technical debt follows a lifecycle involving several distinct
phases: (1) Identification: recognizing areas of technical debt through methods such as code
reviews, static analysis tools, continuous integration systems, automated testing reports, and
developer or stakeholder feedback. (2) Assessment: evaluating the significance, impact, and
urgency of identified debt using various quantitative metrics and qualitative judgment (e.g., ex-
pert opinions, team surveys). (3) Prioritization: determining the sequence and importance of
addressing specific debt items, based on their potential to negatively affect software quality,
business objectives, project timelines, and available resources. (4) Resolution: implementing
improvements through techniques such as refactoring, redesigning modules, rewriting problem-
atic components, or improving documentation, always balancing immediate resource constraints
against longer-term maintenance benefits. (5) Monitoring and prevention: continuously track-
ing technical debt to understand its evolution over time, ensuring new debt is recognized early,
and promoting practices to minimize future debt accrual (e.g., enforcing coding standards).

Impact on software quality and sustainability. Unchecked technical debt can substan-
tially degrade software quality, leading to increased complexity, higher defect rates, reduced
productivity, and greater difficulty in accommodating future changes or enhancements. Over
time, technical debt accumulation can also hinder a project’s responsiveness, and adaptability
to new user requirements. Furthermore, persistent technical debt can create significant barriers
to innovation, diverting resources away from development of new features toward maintenance
and refactoring. This paper focuses specifically on code and architectural debt, as these types
are among the most prevalent and impactful in industry practices.

Metrics and measurement techniques. Effective measurement of technical debt relies on
capturing both code-level and architectural properties that directly impact maintainability and
system resilience [3]. Code metrics reflect internal complexity, size, quality of source code: (1)
Complexity and effort: cyclomatic complexity quantifies branching logic and test effort, while
Halstead metrics assess code volume, difficulty, and estimated comprehension time. High val-
ues indicate hotspots requiring review or refactoring. (2) Size and churn: lines of code (LOC)
serve as a basic measure of system size; sudden spikes or modules with sustained high churn
often signal rushed or unstable code that may harbor hidden debt. (3) Duplication: clone de-
tection finds identical or near-duplicate code fragments, which inflate maintenance effort and
risk inconsistent bug fixes. (4) Coupling and cohesion: coupling metrics (e.g. dependencies
between modules) reveal tightly interconnected components that are hard to change in isolation;
cohesion metrics (e.g. how closely methods within a class relate) indicate whether modules
have clear, focused responsibilities. (5) Quality indicators: test coverage percentages expose
untested regions prone to regressions, and code smell counts highlight common anti-patterns
(such as long methods or large classes) with an associated remediation cost.

Available tools for technical debt measurement. While custom scripts can compute indi-
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vidual metrics, several mature platforms offer integrated measurement and reporting. However,
two major platforms commonly used: (1) SonarQube: provides static code analysis for multiple
languages, computing complexity, duplication, coverage, and smell counts. It allows threshold
configuration, pull-request decoration, and historical trend charts. SonarQube’s SQALE model
also estimates remediation costs, producing a consolidated debt report [3]. (2) CAST Software
Engineering Platform: focuses on architectural and structural analysis, building dependency
graphs and measuring coupling, cohesion, and layering violations. CAST also delivers de-
tailed architectural health reports and remediation roadmaps. These tools integrate into CI/CD
pipelines, enabling continuous measurement, automated gating, and visualization through dash-
boards or IDE plugins. Selecting the right combination depends on language support, budget,
desired metric depth, and integration requirements.

3. Algorithms and data structures for measuring and representing technical debt
Graphs. Graphs model software components as nodes and their relationships as edges, en-
abling holistic analysis of architecture and code interdependencies. Two common graph types:
(1) Dependency graphs: nodes represent modules, packages, or classes, with directed edges
indicating compile-time or run-time dependencies. Analysis of dependency graphs can reveal
tightly coupled clusters, cyclical dependencies, and architectural violations. Algorithms such
as Tarjan’s strongly connected components detect cycles, while centrality measures (e.g., be-
tweenness, eigenvector centrality) identify modules that act as critical bridges. Debt hotspots
correspond to highly central or cyclically related nodes where changes propagate widely [3]. (2)
Call graphs: nodes represent functions or methods, with edges for invocation relationships. Call
graphs support detection of overly complex routines (dense subgraphs) and the analysis of ex-
ecution paths. Path-based metrics, like longest call chains and fan-in/fan-out counts, highlight
methods with high maintenance risk. Graph traversal algorithms (depth-first search, breadth-
first search) aid in impact analysis: determining the ripple effect of changes and prioritizing
refactoring targets [1].

Abstract Syntax Trees. Abstract Syntax Trees [2] provide a structured, hierarchical rep-
resentation of source code, breaking down programs into their constituent syntactic elements
such as expressions, statements, and declarations. By capturing the grammatical structure of
code, ASTs enable tools and algorithms to understand not just the textual content, but also the
relationships and nesting that define how a program operates. Processing an AST typically in-
volves traversing its nodes in pre-order or post-order fashion, which allows static analysis tools
to identify patterns indicative of technical debt. For instance, deeply nested conditional blocks or
excessively large method subtrees often correspond to complex or error-prone code segments.
By measuring tree depth and counting the number of nodes in specific subtrees, analysts can
pinpoint "God classes" or long methods that are candidates for refactoring. AST traversal thus
serves as a powerful mechanism to extract detailed code metrics beyond simple line counts.

Machine Learning algorithms. Machine learning supplements structural representations
by learning patterns of technical debt from historical data: (1) Classification: supervised models
(e.g. decision trees, support vector machines, random forests) classify code modules or commits
as "debt" or "non-debt" based on feature vectors derived from metrics and embeddings. Train-
ing labels originate from past refactoring records or expert annotations. Classification aids in
automatic detection of debt hotspots and generates precision/recall statistics to validate metric
thresholds [1]. (2) Clustering: unsupervised algorithms group similar code components based
on metric profiles or embedding similarities. Clusters often correspond to functional areas or
debt domains; outlier clusters identify modules with unusual complexity or duplication patterns
[1]. (3) Ranking: graph-inspired ranking algorithms, such as PageRank, can prioritize debt
items by treating modules as nodes with weighted edges representing dependencies. Modules
with high "debt rank" scores—due to centrality or frequent modification—are surfaced first for
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remediation. Learning-to-rank approaches can refine ranking using supervised signals (e.g.,
historical fix order) to optimize prioritization [1].

Data preparation and input formats. Transforming raw software artifacts into meaning-
ful inputs for generative AI begins with careful data curation. The process starts by sanitizing
source code, configuration files, and architecture descriptions—removing irrelevant comments,
standardizing naming conventions, and stripping out proprietary or non-essential content to re-
duce noise. Once cleaned, the codebase is segmented into coherent units – such as individual
classes, modules, or microservices – so that each unit preserves contextual integrity and con-
forms to the token limits of target AI models. Each segment is then enriched with metadata
annotations: cyclomatic complexity scores reveal branching hotspots, duplication percentages
highlight clone-related debt, and dependency counts map coupling intensity. These annotations
guide the AI’s focus toward areas most in need of attention. Finally, to provide historical and
rationale context, each code snippet is packaged alongside related artifacts – documentation ex-
cerpts, commit messages, or issue tracker entries – helping the model understand why certain
shortcuts were taken and how debt accumulated over time.

Embedding techniques. Translating code and architecture elements into continuous vector
spaces enables AI models to understand syntactic and semantic relationships: (1) CodeBERT
and GraphCodeBERT: pretrained on large code corpora, these transformer-based models pro-
duce token embeddings that capture local syntax and some semantic patterns. Graph-CodeBERT
further incorporates data flow and control flow graphs, enriching embeddings with structural
context [3]. (2) AST-based embeddings: by applying tree-based convolutional networks or graph
neural networks directly to ASTs, embeddings can encode fine-grained syntactic patterns and
variable scopes. These embeddings are particularly useful for capturing nuanced debt indicators
like nested complexity or unconventional control structures. (3) Hybrid embeddings: combin-
ing token-level embeddings from CodeBERT with graph embeddings from dependency graphs
or call graphs yields richer representations that fuse code semantics with architectural context,
enabling generative AI to reason across multiple abstraction levels [3].

4. Conclusions
This paper has examined the multifaceted process of technical debt management—from its mea-
surement and representation to leveraging generative AI for intelligent remediation. By defining
clear, quantitative code and architectural metrics and integrating them with qualitative assess-
ments, we establish a solid foundation for identifying and prioritizing debt hotspots. Data struc-
tures such as dependency graphs and ASTs enable rich modeling of software artifacts, while
machine learning algorithms classify, cluster, and rank debt items based on their complexity,
coupling, and historical maintenance data.
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