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Abstract

This paper presents a novel approach to the classification of distributed data, which integrates
the cooperation of local decision tables within coalitions with rule induction and decision tem-
plates. The method aims to preserve model transparency while taking into account the diversity
of data sources. Experiments were conducted on three datasets, comparing the performance of
four rule induction algorithms: exhaustive search algorithm, genetic algorithm, covering algo-
rithm, and LEM2. The best classification results were obtained for the exhaustive and genetic
algorithms, while the covering and LEM2 methods performed significantly worse. The proposed
approach achieves results comparable to the baseline method, which does not incorporate the
coalition mechanism, while offering higher interpretability. In addition, the proposed solution
was compared with the Authors’ earlier approaches based on decision tree classifiers.

Keywords: Distributed data classification, Decision rules, Coalitions, Interpretability, Rule in-
duction algorithms.

1. Introduction
In modern data-driven systems, the utilization of distributed/dispersed tabular data – where in-
formation is fragmented across independently managed local tables – presents both opportu-
nities and challenges. While decentralized storage enables scalability and domain-specific cus-
tomization, it introduces critical data integrity risks resulting from potential contradictions or in-
consistencies between local datasets. Inconsistencies in attribute distributions or measurement
protocols can create conflicting representations of reality, destroying the reliability of analy-
ses. At the same time, the interpretability of machine learning models is crucial – particularly
in fields such as business, medicine, and other high-risk domains, where understanding and
trusting model decisions is essential. In this paper, the literature review is integrated into the in-
troduction section to ensure narrative cohesion and to better contextualize the research problem
within existing approaches.

Machine learning techniques for classification can be broadly divided into interpretable
models, such as rule-based classifiers and decision trees [8], and black-box models like deep
learning and neural networks, which, while highly accurate, often lack transparency and ex-
plainability [9]. The challenge of classifying dispersed data has been addressed in the literature
through various strategies. Ensemble learning approaches, for example, train multiple classifiers
on separate data partitions and combine their outputs using methods such as voting or weighted
averaging, as seen in bagging, boosting, and stacking [19]. However, these strategies typically
focus on boosting accuracy rather than integrating knowledge from disparate sources. Federated
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learning has emerged as an alternative, enabling decentralized model training without direct data
exchange to preserve privacy, but at the cost of interpretability [13]. Other studies have explored
hierarchical classification frameworks that aggregate local models at different levels, though
these often lack explicit mechanisms for resolving conflicts between local predictions.

Pawlak’s conflict analysis model [12] has been influential in addressing inconsistencies in
decision-making, particularly within rough set-based learning and three-way decision theory
[22]. Data fusion techniques have also been proposed, using statistical and mathematical mea-
sures to reconcile inconsistencies in dispersed datasets [23], but these methods rarely produce
human-readable decision rules. More recent research in distributed learning has highlighted the
importance of considering dependencies and potential conflicts between local models, as ignor-
ing these relationships can undermine the quality and reliability of the final prediction. Rough
set theory, as introduced by Pawlak [11], provides a theoretical foundation for handling uncer-
tainty and conflict in classification by partitioning data into lower and upper approximations,
and has since been extended by numerous researchers [6], [16, 17], including the development
of three-way decision theory [20, 21].

This paper introduces a novel framework that addresses both challenges through coalition-
based analysis, interpretable rule induction and decision templates representing patterns in pre-
dictive vectors generated from rules. By grouping local tables into coalitions with aligned sta-
tistical profiles, we mitigate data integrity risks while preserving meaningful variations between
subgroups. Each coalition generates transparent decision rules with using rough set theory.
These rule-based outputs are then synthesized into decision templates – patterns that capture
coalition-specific decision strategies while enabling robust final classification through template
matching.

The main novelty of this paper lies in the integration of decision templates with coalition-
based classification for distributed tabular data. While the concept of forming coalitions from
local tables has been explored in previous papers [14, 15], this is the first time that decision
templates – constructed from rule-based predictions – are used in conjunction with coalitions to
provide both classification accuracy and interpretability.

The remainder of this paper is structured as follows. Section 2 details the proposed frame-
work for classifying dispersed data, coalition formation, the process of rule induction and the
decision templates method. Section 3 outlines the dataset, experimental procedures, and results,
with a focus on evaluating the performance of various rule induction algorithms. Section 4
concludes the paper and discusses directions for future research.

2. Methods and models
In this study, we focus on a classification method that works with data stored by independent
units. Our goal is to use easy-to-interpret decision rules. The method has a layered structure,
where similar data from local tables are grouped together. When data in these groups are con-
sistent, we can create reliable decision rules. Predictions for training objects obtained based
on decision rules derived from groups of local tables are used to construct decision templates
for individual decision classes. These templates serve as reference patterns, capturing subtle
distinctions that reflect the unique capabilities, specializations of each group of local tables.
The final decision is determined by assessing the similarity between the predictions for the test
object generated by the rules and the corresponding decision class templates. Four main steps
in the proposed method are as follows:

1. Grouping local tables into coalitions – local tables containing compatible data,

2. Aggregating data and inducing local decision rules for coalitions,

3. Generating prediction vectors for training objects and creating decision template for each
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decision class,

4. Final classification, prediction vectors for the test object are compared to the decision
templates using normalized Euclidean distance.

The idea of joining local tables into coalitions has been used before in the papers [14, 15].
However, this approach has not been combined with decision templates and decision rules gen-
erated based on rough set theory until now. Below, we give a formal explanation of how this
approach works for dispersed data.

We use dispersed tabular data. All these tables have the same set of condition attributes.
Let’s define each local table as Di = (Ui, A, d) for i ∈ {1, . . . , n}. Here, Ui is the set of objects
in the table, A is the set of condition attributes, and d is the decision attribute. These local tables
are managed independently and may be stored in different locations. Some of them may also
contain conflicting or inconsistent data.

To group local tables into coalitions, we compare the statistical properties of the data and
use Pawlak’s conflict analysis model [12]. In this model, an information system is described
as S = (LD,A), where LD is the set of all local decision tables: LD = {Di : i ∈ {1, . . . , n}}
and A is the set of attributes occurring in these tables.

In this system, we describe the significance of each attribute using three values: {−1, 0, 1}.
For each attribute a ∈ A, we define a function a : LD → {−1, 0, 1}, which assigns a value
to each local table. These values mean the following: a(Di) = 0 means that the values of
attribute a in table Di are typical compared to all other tables. a(Di) = 1 means the values
are higher than usual. a(Di) = −1 means the values are lower than usual. The way we assign
these values depends on the type of attribute – whether it’s qualitative (like colors or categories)
or quantitative (like numbers). This allows us to fairly compare different kinds of data across all
the local tables.

To assess quantitative attributes aquan ∈ A, we begin by determining the average value of
each attribute within every local decision table Di, denoted as V al

i
aquan . We then compute the

overall average and standard deviation of that attribute across all tables in the system, labeled
V alaquan and SDaquan , respectively. Based on these global statistics, we define a classification
function aquan : LD → {−1, 0, 1}, which evaluates whether a local table’s attribute average
deviates significantly from the norm:

aquan(Di) =


1 if V alaquan + SDaquan < V al

i
aquan

0 if V alaquan − SDaquan ≤ V al
i
aquan ≤ V alaquan + SDaquan

−1 if V al
i
aquan < V alaquan − SDaquan

(1)

This categorization allows us to capture variations in quantitative attributes by assigning each
table to one of three significance levels.

In the case of qualitative attributes aqual ∈ A, we take a different route. For each local table
Di, we count the frequency of every possible value the attribute can assume. If the attribute has
c possible values, we construct a frequency vector V aliaqual = (ni

1, . . . , n
i
c), where ni

j denotes
the count of value valj in table Di. To group local tables by similarity in value distributions, we
apply a 3-means clustering algorithm on the set of frequency vectors using Euclidean distance.
Each cluster represents a different pattern of attribute distribution. Based on the assigned cluster,
we label each table:

• aqual(Di) = 1 if Di belongs to the first cluster,

• aqual(Di) = 0 if Di belongs to the second cluster,

• aqual(Di) = −1 if Di belongs to the third cluster.
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After each local table has been encoded using these trinary values for all attributes, we define
a pairwise conflict function ρ : LD × LD → [0, 1]. This function quantifies the disagreement
between two local tables by comparing their categorical representations:

ρ(Di, Dj) =
card{a ∈ A : a(Di) ̸= a(Dj)}

card{A}
. (2)

A higher value of ρ(Di, Dj) reflects a stronger divergence between the attribute profiles of the
two tables. Using this measure, we form coalitions by grouping tables that show a high degree
of alignment. Specifically, two tables may be part of the same coalition if ρ(Di, Dj) < 0.5,
meaning that they agree on at least half of the attributes.

Each coalition is then represented by an aggregated decision table that consolidates the data
of its members. For coalition j, this table is expressed as: Daggr

j = (Uaggr
j , A, d) is the union of

all objects from the local tables within the coalition. The conditional attribute set A and decision
attribute d remain the same as in the original tables. For each object x ∈ Ui, its attribute values
in the aggregated table are directly acquired from the source table Di.

We assume that, within each coalition, the raw datasets are shared to aggregation. This in-
troduces potential privacy concerns, but it also enables to derive coherent decision-rule repre-
sentations and to construct decision templates in the second step that capture the distinctive
specialization of each coalition of decision tables.

After constructing the aggregated decision tables, we perform rule induction on each table
individually to extract its local decision rules. While brute-force techniques exhaustively enu-
merate all possible rules, they quickly become impractical as the number of attributes grows.
To address this, the literature offers a variety of heuristic and metaheuristic methods-ranging
from ant colony optimization and approximation schemes to other algorithms that reduce com-
putational cost. In our experiments, we employ four rough set–based induction strategies:

• Exhaustive search algorithm (Exh) [3]

• Genetic algorithm (Gen) [1]

• Covering algorithm (Cov) [2]

• LEM2 algorithm (LEM2) [7]

For each coalition, the rule set induced from its aggregated decision table is applied to gener-
ate prediction vector for objects. Measurement level vectors are generated for tests and training
objects in the same way. For the object, we first identify all rules that cover the object and
assign each a weight equal to rule’s coverage frequency (i.e., the number of matching objects
from the training set) divided by the total number of rules in the corresponding local rule set
for coalition. We then sum these weights within each decision category. The prediction vec-
tor is normalized. Thus, for each j−th coalition and object x, a prediction vector is created
[µj,1(x), · · · , µj,i(x), · · · , µj,c(x)], where c is the number of decision classes.

In the last stage of the proposed model, a method based on decision templates is used [10].
In the decision template approach, we first build a template for each decision class by combining
the rule-based predictions made on our training data. Then, for a new object, we compare its
prediction results to these templates and pick the class whose template it most closely matches.

During the decision template method training phase, we aggregate rule-based outputs to
form a prototype prediction pattern for each decision class. The decision template DTi for class
i is the average of the prediction vectors of the objects of the training set labelled in class i, thus

DTi =
1

card{Xi}
∑
x∈Xi


µ1,1(x) · · · µ1,i(x) · · · µ1,c(x)

· · ·
µj,1(x) · · · µj,i(x) · · · µj,c(x)

· · ·
µL,1(x) · · · µL,i(x) · · · µL,c(x)

 , (3)
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where Xi is the set of objects from the training set that belongs to the class i and L is the number
of coalitions. When classifying objects x̄, we generate their prediction vectors and store in a the
decision profile

DP (x̄) =


µ1,1(x̄) · · · µ1,i(x̄) · · · µ1,c(x̄)

· · ·
µj,1(x̄) · · · µj,i(x̄) · · · µj,c(x̄)

· · ·
µL,1(x̄) · · · µL,i(x̄) · · · µL,c(x̄)

 (4)

Then we match the decision profile against decision templates DTi to identify the most similar
decision class. To calculate the distance between the decision profile and the decision templates,
we use the normalised Euclidean distance

s(DP (x̄), DTi) =
1

L · c

L∑
m=1

c∑
l=1

(
DPm,l(x̄)−DTm,l

i

)2
, (5)

where DPm,l(x̄) and DTm,l
i is an element at the m-th row and the l-th column of the matrix

DP (x̄) or DTi respectively.

3. Experiments
To experimentally evaluate the proposed approach, three datasets from the UCI Machine Learn-
ing Repository [5] were used: Vehicle Silhouettes [18], Car Evaluation [4], and Balance Scale.
Each dataset was partitioned into two disjoint subsets through a stratified sampling procedure:
a training set (70% of the instances) and a test set (the remaining 30%). The characteristics of
the datasets are presented in Table 1.

Table 1. Dataset characteristics

Dataset # Training set # Test set # Conditional
attributes

Attributes
type

# Decision
classes

Vehicle Silhouettes 592 254 18 Integer 4
Car Evaluation 1209 519 6 Categorical 4
Balance Scale 437 188 4 Categorical 3

Next, to reflect environments in which data are collected and maintained by multiple inde-
pendent sources, each training set was partitioned into several levels of data dispersion, com-
prising 5, 7, 9, and 11 local tables. This partitioning was performed in a stratified manner.
Each local table retains the full set of attributes while containing only a subset of instances from
the original training set. In total, 12 dispersed versions of the datasets were prepared.

The quality of classification was assessed based on the test set. To enable a thorough com-
parison of the results, several complementary performance metrics were applied: classification
accuracy (Acc), balanced accuracy (BAcc), precision (Prec.), recall, F-measure (F-m.), and ge-
ometric mean (G-mean). Accuracy refers to the proportion of correctly classified instances.
Precision indicates the percentage of predictions assigned to a given class that were correct,
whereas recall measures the percentage of instances belonging to a given class that were cor-
rectly identified. F-measure is the harmonic mean of precision and recall, balancing these two
aspects of evaluation:

F-measure = 2 · Precision · Recall
Precision + Recall

. (6)

In turn, balanced accuracy and G-mean are metrics that account for class imbalance – the former
is based on the average recall across all classes, while the latter evaluates the overall balance of
classification performance, emphasizing high recall in each class.
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The experimental procedure consisted of the following steps:

• Formation of coalitions of local decision tables.

• Induction of decision rules for the aggregated tables corresponding to each coalition using
one of four rough set-based methods: exhaustive search algorithm, genetic algorithm,
covering algorithm, or LEM2 algorithm.

• Generation of prediction vectors for training and test objects based on the derived rule
sets, using the weighted rules method.

• Construction of decision templates for each decision class by averaging the prediction
vectors of training objects belonging to that class.

• Classification of test objects from the test set by comparing their prediction vectors with
the decision templates using normalized Euclidean distance, and assigning the final deci-
sion based on the best match.

The obtained results will be analyzed from two perspectives. First, the proposed approach
will be compared to a baseline approach, in which no conflict analysis or coalition formation is
applied; instead, decision rules are induced independently for each local table. Second, the per-
formance of the proposed approach will be compared with selected results presented in previous
studies [14, 15].

Tables 2 and 3 present the classification results for all dispersed datasets, corresponding to
the proposed and baseline approaches, respectively. The tables include abbreviations for the
analyzed rule induction methods: exhaustive search algorithm (Exh), genetic algorithm (Gen),
covering algorithm (Cov), and LEM2 algorithm (LEM2). For the genetic algorithm, the impact
of the number of reducts was investigated by testing values of 10, 100, and 1000. Ultimately, the
results for 100 reducts are reported, as using 10 yielded inferior performance, while increasing
the number to 1000 did not lead to any noticeable improvement in classification quality.

The results show variation depending on the dataset characteristics, the number of local
tables, and the chosen rule induction strategy. Among the analyzed methods, the exhaustive
search (Exh) and genetic (Gen) algorithms consistently achieve the highest performance metrics,
regardless of the dataset and the level of dispersion. Their results are marked by high stability
and robustness to changes in data structure. For the Car Evaluation and Balance Scale datasets,
the obtained results are nearly identical, which may suggest that the decision rules generated by
both algorithms overlap to a large extent. In contrast, the Vehicle dataset exhibits the greatest
variation in performance across induction methods, which may indicate a higher sensitivity of
this dataset to the choice of algorithm.

Noticeably weaker results were observed for the covering (Cov) and LEM2 algorithms –
especially Cov, which in many configurations produced the lowest values across most of the
analyzed metrics. It is worth noting, however, that metrics such as precision and G-mean are
often relatively higher for these methods than for the remaining ones, which may suggest that the
models exhibit selective alignment with one of the classes at the expense of overall classification
performance.

The choice of a specific rule induction method within the proposed framework should take
into account the trade-offs between flexibility, interpretability, and implementation simplicity.
While the exhaustive search and genetic algorithms offer high-quality rule sets and are effec-
tive across a variety of settings, they tend to be more demanding in terms of computational
resources and execution time, which may be relevant in applications with limited hardware ca-
pacity or large-scale data. In contrast, covering and LEM2 algorithms are simpler and require
less implementation effort, but they exhibit greater variability in prediction quality and lower ro-
bustness to changes in data structure. Therefore, the selection of the appropriate method should
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Table 2. Results of classification accuracy (Acc), balanced accuracy (BAcc), precision (Prec.),
recall, F-measure (F-m.), and geometric mean (G-mean) for dispersed datasets using the pro-
posed approach.

Dataset No. of tables Method Acc BAcc Prec. Recall F-m. G-mean

Vehicle

5

Exh 0.713 0.700 0.711 0.713 0.706 0.803
Gen 0.685 0.673 0.676 0.685 0.676 0.784
Cov 0.551 0.555 0.551 0.551 0.544 0.687
LEM2 0.579 0.590 0.686 0.579 0.592 0.716

7

Exh 0.701 0.686 0.697 0.701 0.693 0.796
Gen 0.677 0.669 0.683 0.677 0.666 0.780
Cov 0.488 0.488 0.488 0.488 0.485 0.636
LEM2 0.500 0.521 0.638 0.500 0.505 0.659

9

Exh 0.701 0.695 0.707 0.701 0.693 0.797
Gen 0.689 0.684 0.690 0.689 0.681 0.788
Cov 0.469 0.464 0.473 0.469 0.467 0.622
LEM2 0.559 0.574 0.679 0.559 0.565 0.702

11

Exh 0.697 0.683 0.700 0.697 0.689 0.793
Gen 0.701 0.690 0.706 0.701 0.696 0.796
Cov 0.516 0.512 0.521 0.516 0.511 0.657
LEM2 0.504 0.493 0.583 0.504 0.508 0.649

Car

5

Exh 0.740 0.671 0.758 0.740 0.746 0.742
Gen 0.744 0.674 0.761 0.744 0.750 0.745
Cov 0.408 0.322 0.762 0.408 0.509 0.617
LEM2 0.647 0.613 0.766 0.647 0.689 0.741

7

Exh 0.748 0.641 0.760 0.748 0.752 0.743
Gen 0.748 0.641 0.760 0.748 0.752 0.743
Cov 0.408 0.322 0.762 0.408 0.509 0.617
LEM2 0.651 0.562 0.740 0.651 0.684 0.723

9

Exh 0.765 0.726 0.786 0.765 0.772 0.774
Gen 0.765 0.726 0.786 0.765 0.772 0.774
Cov 0.408 0.322 0.762 0.408 0.509 0.617
LEM2 0.661 0.622 0.750 0.661 0.690 0.737

11

Exh 0.765 0.758 0.790 0.765 0.773 0.783
Gen 0.765 0.758 0.790 0.765 0.773 0.783
Cov 0.408 0.322 0.762 0.408 0.509 0.617
LEM2 0.655 0.672 0.774 0.655 0.690 0.751

Balance Scale

7

Exh 0.745 0.742 0.890 0.745 0.795 0.841
Gen 0.745 0.742 0.890 0.745 0.795 0.841
Cov 0.644 0.613 0.783 0.644 0.690 0.749
LEM2 0.628 0.583 0.772 0.628 0.681 0.741

9

Exh 0.686 0.681 0.856 0.686 0.745 0.798
Gen 0.686 0.681 0.856 0.686 0.745 0.798
Cov 0.590 0.501 0.700 0.590 0.636 0.697
LEM2 0.596 0.542 0.747 0.596 0.653 0.715

11

Exh 0.697 0.670 0.863 0.697 0.756 0.806
Gen 0.697 0.670 0.863 0.697 0.756 0.806
Cov 0.511 0.462 0.628 0.511 0.554 0.629
LEM2 0.559 0.497 0.754 0.559 0.632 0.696

be guided by the requirements of a particular use case: when high accuracy and transparent
rule sets are critical, Exh or Gen are preferable; in scenarios where simplicity or computational
efficiency is prioritized, Cov or LEM2 may be more suitable.

The results achieved with the proposed approach are comparable to those of the baseline
method. However, it is worth emphasizing that the model developed within the proposed frame-
work offers a high level of interpretability, which constitutes a significant advantage in practical
applications. Considering this potential, future work will focus on relaxing the full coverage re-
quirement, enabling classification based on partial rule matching. This modification is expected
to improve the overall effectiveness of the proposed approach. Statistical tests were performed
to confirm the there are no statistically significant differences in mean values, F-measure val-
ues were used for comparison. Two dependent samples each containing of 44 observations
were created – results for the proposed approach and the baseline approach from Tables 2 and 3.
The Wilcoxon test indicated that there is no statistically significant difference in mean F-measure
for these two approaches, p = 0.087. A comparative box plot illustrating the F-measure results
for the two methods is provided in Figure 1. As can be observed, the median F-measure value
for the baseline approach is slightly lower than that of the proposed approach. On the other
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Table 3. Results of classification accuracy (Acc), balanced accuracy (BAcc), precision (Prec.), re-
call, F-measure (F-m.), and geometric mean (G-mean) for dispersed datasets using the baseline
approach.

Dataset No. of tables Method Acc BAcc Prec. Recall F-m. G-mean

Vehicle

5

Exh 0.717 0.703 0.715 0.717 0.708 0.807
Gen 0.693 0.690 0.705 0.693 0.687 0.791
Cov 0.583 0.581 0.584 0.583 0.578 0.709
LEM2 0.594 0.603 0.689 0.594 0.603 0.727

7

Exh 0.685 0.674 0.683 0.685 0.676 0.784
Gen 0.654 0.649 0.660 0.654 0.645 0.763
Cov 0.583 0.580 0.588 0.583 0.580 0.709
LEM2 0.547 0.563 0.613 0.547 0.546 0.691

9

Exh 0.693 0.682 0.694 0.693 0.684 0.790
Gen 0.693 0.687 0.701 0.693 0.688 0.791
Cov 0.591 0.586 0.609 0.591 0.586 0.716
LEM2 0.606 0.598 0.631 0.606 0.615 0.728

11

Exh 0.669 0.655 0.668 0.669 0.657 0.772
Gen 0.650 0.646 0.675 0.650 0.640 0.760
Cov 0.598 0.595 0.616 0.598 0.596 0.722
LEM2 0.571 0.565 0.608 0.571 0.580 0.705

Car

5

Exh 0.750 0.706 0.763 0.750 0.755 0.746
Gen 0.750 0.706 0.763 0.750 0.755 0.746
Cov 0.408 0.322 0.762 0.408 0.509 0.617
LEM2 0.657 0.607 0.759 0.657 0.690 0.740

7

Exh 0.753 0.736 0.777 0.753 0.761 0.769
Gen 0.753 0.736 0.777 0.753 0.761 0.769
Cov 0.408 0.322 0.762 0.408 0.509 0.617
LEM2 0.663 0.566 0.754 0.663 0.693 0.740

9

Exh 0.767 0.757 0.787 0.767 0.773 0.775
Gen 0.765 0.755 0.784 0.765 0.771 0.772
Cov 0.408 0.322 0.762 0.408 0.509 0.617
LEM2 0.705 0.657 0.786 0.705 0.730 0.779

11

Exh 0.742 0.712 0.774 0.742 0.752 0.767
Gen 0.742 0.713 0.776 0.742 0.753 0.769
Cov 0.410 0.416 0.763 0.410 0.505 0.621
LEM2 0.642 0.639 0.769 0.642 0.675 0.745

Balance Scale

7

Exh 0.713 0.774 0.922 0.713 0.776 0.830
Gen 0.707 0.770 0.922 0.707 0.772 0.827
Cov 0.601 0.546 0.720 0.601 0.641 0.704
LEM2 0.580 0.567 0.819 0.580 0.659 0.725

9

Exh 0.718 0.759 0.901 0.718 0.776 0.828
Gen 0.718 0.759 0.901 0.718 0.776 0.828
Cov 0.612 0.535 0.731 0.612 0.659 0.719
LEM2 0.644 0.577 0.793 0.644 0.701 0.756

11

Exh 0.713 0.737 0.899 0.713 0.773 0.825
Gen 0.713 0.737 0.899 0.713 0.773 0.825
Cov 0.644 0.522 0.722 0.644 0.677 0.731
LEM2 0.537 0.536 0.786 0.537 0.618 0.692

hand, the baseline approach exhibits less variation than the proposed approach.

Fig. 1. Comparison of F-measure obtained for the proposed and the baseline approaches.

In previous papers [14, 15], alternative approaches to the classification of distributed data
were proposed, based on the same mechanism for aggregating local decision tables into coali-
tions. Both studies applied a classification process based on decision trees. Study [14] analyzed
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the impact of coalition formation on classification quality, while study [15] extended this ap-
proach by introducing a stopping criterion referring to the minimum number of instances in
a decision tree node. The experiments considered three values of this parameter: 2, 7, and
12. Tables 4 and 5 present the selected results for the approaches described in [14] and [15],
respectively, including both the coalition-based and baseline variants. The results for the Ve-
hicle dataset are taken directly from the original papers, whereas the experiments for the Car
Evaluation and Balance Scale datasets were conducted as part of the present study to enable
comparison with the current rule-based approach on the same data. In addition to classifica-
tion accuracy (Acc), the results include the AccONE metric, which reflects the performance of
unambiguous classification, and the d̄ index, which indicates the average number of ties in the
classification. Better classification accuracy results are highlighted in blue.

Table 4. Comparison of classification results for the coalition-based and baseline approaches using
decision tree models, based on methods from [14].

Dataset No. of tables
Proposed approach Baseline approach

Acc AccONE d̄ Acc AccONE d̄

Vehicle

5 0.791 0.709 1.173 0.756 0.677 1.094
7 0.780 0.669 1.228 0.752 0.681 1.114
9 0.740 0.685 1.075 0.760 0.693 1.098
11 0.776 0.728 1.051 0.740 0.673 1.087

Car

5 0.842 0.690 1.158 0.802 0.778 1.031
7 0.836 0.721 1.123 0.769 0.741 1.037
9 0.786 0.753 1.035 0.825 0.769 1.064
11 0.811 0.734 1.083 0.803 0.780 1.025

Balance Scale
7 0.851 0.676 1.202 0.846 0.798 1.059
9 0.872 0.777 1.165 0.862 0.846 1.037
11 0.856 0.771 1.154 0.824 0.771 1.074

Table 5. Comparison of classification results for the coalition-based and baseline approaches using
decision tree models with a stopping criterion (minimum number of instances in a node), based
on methods from [15].

Dataset No. of tables Stop criteria
Proposed approach Baseline approach

Acc AccONE d̄ Acc AccONE d̄

Vehicle

5
2 0.768 0.701 1.142 0.756 0.669 1.098
7 0.760 0.673 1.197 0.736 0.634 1.110
12 0.732 0.642 1.189 0.732 0.622 1.110

7
2 0.776 0.697 1.181 0.783 0.705 1.114
7 0.772 0.638 1.268 0.748 0.677 1.118
12 0.780 0.657 1.252 0.736 0.661 1.114

9
2 0.740 0.689 1.067 0.752 0.669 1.118
7 0.720 0.701 1.047 0.732 0.685 1.063
12 0.717 0.677 1.055 0.732 0.665 1.114

11
2 0.791 0.744 1.087 0.717 0.665 1.083
7 0.783 0.732 1.063 0.736 0.677 1.071
12 0.756 0.720 1.047 0.713 0.650 1.075

Car

5
2 0.850 0.692 1.168 0.792 0.763 1.035
7 0.819 0.701 1.121 0.790 0.757 1.044
12 0.844 0.709 1.152 0.798 0.755 1.060

7
2 0.834 0.719 1.127 0.751 0.724 1.031
7 0.807 0.736 1.075 0.800 0.771 1.042
12 0.823 0.751 1.075 0.798 0.782 1.015

9
2 0.778 0.736 1.105 0.825 0.773 1.064
7 0.778 0.759 1.023 0.800 0.775 1.033
12 0.800 0.751 1.039 0.771 0.757 1.023

11
2 0.809 0.748 1.066 0.798 0.773 1.031
7 0.815 0.753 1.073 0.792 0.763 1.037
12 0.834 0.748 1.094 0.798 0.773 1.031

Balance Scale

7
2 0.856 0.686 1.197 0.840 0.782 1.064
7 0.830 0.713 1.138 0.824 0.745 1.085
12 0.824 0.702 1.144 0.803 0.734 1.074

9
2 0.856 0.766 1.144 0.851 0.824 1.059
7 0.846 0.702 1.223 0.804 0.777 1.074
12 0.782 0.702 1.090 0.782 0.707 1.074

11
2 0.846 0.766 1.144 0.830 0.793 1.069
7 0.851 0.782 1.128 0.883 0.793 1.112
12 0.814 0.729 1.112 0.883 0.755 1.128
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As can be seen, the results indicate a clear advantage of the coalition-based approach over
the baseline one – in almost all cases, it delivers better classification performance. The differ-
ences between the compared methods are more pronounced than in the case of the currently
proposed approach based on decision rules. This may be due to the fact that tree-based models
offer greater flexibility in fitting the data and more effective use of the structural information in
the dataset.

On the other hand, the current rule-based method offers greater transparency and inter-
pretability, which is a significant advantage in applications that require explainable decision–
making. Despite less pronounced differences compared to the baseline approach, the results
remain competitive, indicating potential for further development.

4. Conclusion
This study introduced a novel method for the classification of distributed data, combining the
mechanism of forming coalitions of local decision tables with interpretable decision rule induc-
tion and decision templates. The method enables the integration of knowledge from multiple
sources while maintaining model transparency and robustness to data heterogeneity.

The effectiveness of the proposed approach was evaluated using three datasets: Vehicle
Silhouettes, Car Evaluation, and Balance Scale. Four rule induction algorithms were analyzed:
exhaustive search, genetic, covering, and LEM2. The best classification results were achieved
using the exhaustive and genetic algorithms, which demonstrated high stability. In contrast, the
covering and LEM2 algorithms showed significantly weaker overall classification performance.
The results indicate that the proposed approach achieves classification quality comparable to
the baseline method, which does not incorporate conflict analysis or the coalition mechanism.
At the same time, the proposed approach offers significantly greater model interpretability.

In addition, the performance of the currently proposed solution was compared with the Au-
thors’ previous approaches based on decision tree classifiers. The results suggest that tree-
based models provide greater flexibility but at the expense of reduced transparency. The current
method, due to the simplicity of the decision rule structure, is particularly suitable for scenarios
requiring explainable decisions.

The applicability of the method can be illustrated across several critical real-world contexts.
In medical decision support, for example, rule-based models can assist clinicians by providing
clear explanations for diagnostic classification or patient risk assessment, thereby increasing
trust in automated systems. In the banking sector, interpretable rules are valuable for credit
scoring and fraud detection, where decisions must be auditable and regulatory compliance is
essential. Similarly, in educational analytics, simple decision rules can help implement person-
alized learning strategies in a way that is both actionable and understandable for educators.

In future work, the proposed approach will be extended, including the introduction of classi-
fication based on partial rule coverage. Additionally, the effectiveness of the method is planned
to be evaluated in combination with a decision tree classifier.
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[13] Pękala, B., Wilbik, A., Szkoła, J., Dyczkowski, K., Żywica, P.: Federated learning with
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