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Abstract

This paper presents a descriptor-based method for labeling point clouds using a two-stage trans-
former architecture. The first stage consists of an encoder that extracts descriptors from point
cloud fragments. The second stage, a decoder, assigns labels to these fragments based on both
the descriptor of the current fragment and an earlier predefined pattern descriptor. This approach
functions as an interactive labeling tool similar to a brush, with the ability to reinforce or weaken
the pattern through direct manipulation of its descriptor.
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1. Introduction

The advent of large language models has enabled the solution of many tasks, such as point-
cloud labeling, more effectively than ever before. However, given their size, these models often
operate like brute-force methods, and handling huge datasets can become cumbersome. In this
work, we focus on labeling raw data acquired with the Leica BLK360 3D laser scanner.

In practical scenarios, a scene may include several dozen scans of millions of points, and it
is rarely possible to limit processing to a fixed, predefined set of classes. The scanning context,
especially outdoors, can vary widely or even be unique. The context of a similar place may
change with season, weather, or lighting conditions. Despite this variability, most of the existing
methods address only a narrow range of classes, mainly due to the availability of standardized
benchmarks that facilitate comparison and evaluation of different network architectures.
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2. Related Work

Numerous methods for point cloud classification and registration are closely related to our ap-
proach. Much research has focused on designing effective feature extraction methods for point
clouds. Early graph-based methods include PointNet and its extensions [2]. Projection-based
approaches project the point cloud onto 2D surfaces and apply 2D convolutions like examples of
KPConv and RangeNet++ [1]. Voxelization and clustering methods subdivide space into voxels
or superpoints like MV X-Net [4] and Submanifold Sparse Convolutions [3] to leverage 3D con-
volutional architectures efficiently. Recently, transformer-based models have achieved the best
performance on point cloud tasks. Their ability to handle irregular data makes them particularly
well suited to point clouds [5], [6]. These advances motivate our descriptor-based, two-stage
transformer framework for scalable point cloud labeling.

3. Proposed Semi-Labeling Method for Point Clouds

The core idea of our approach is an interactive “magic brush” that assists the user in manual
labeling only the points that match a chosen pattern. The user begins by roughly marking a
few keypoint regions of interest. Using these examples, the tool filters user selection during
manual labeling to label only points that appear similar. The user remains in full control of
the process, and if the user notices mislabeling or unwanted points, they can mark additional
positive examples to reinforce the pattern or mark negative examples to suppress it.

3.1. Vision Transformer Model

Our method is based on the Vision Transformer (ViT) architecture, originally developed for
image classification, with two key modifications. First, we replace several dropout layers with
batch normalization to enhance the stability and repeatability of the resulting descriptor. Second,
instead of using image patches, we construct point patches by extracting the k£ nearest neighbors
of each point. For each patch, we compute a feature vector that includes RGB values, pairwise
distances between points, and direction vectors relative to the local best-fit plane. To ensure
consistent feature ordering for the transformer, we sort the neighboring points according to
their projection order onto this plane. The overall system consists of two independent networks
(Fig. 1): an encoder and a decoder. The encoder produces both a global descriptor for each point
cloud fragment and a local descriptor for every point. During the creation of the labeling pattern,
the descriptors of the user-selected fragments are aggregated into a single normalized global
pattern descriptor. Users may also mark unwanted fragments to suppress those features. The
decoder is only invoked during the labeling phase. It takes as input the local point descriptors
generated by the encoder and the global pattern descriptor, and computes similarity scores that
determine which points should be labeled.

3.2. Model Training

Our method operates directly on raw, unlabeled data from the 3D scanner, so we also apply
the unsupervised learning method. We begin by sampling random fragments from these scans
and create perturbed counterparts by adding noise to the data to alter the selection of & near-
est neighbors. To prevent the encoder from exploiting point order or fragment centroids, we
randomly shuffle points within each fragment. Both the original and perturbed fragments are
passed through the encoder, and a similarity loss is optimized to align their global and local
descriptors. Next, we train the decoder while fine-tuning the encoder by mixing descriptor data
across batches. Each batch consists of multiple point-cloud fragments, each supplying its local
point descriptors along with a single global pattern descriptor. These descriptors are shuffled to
form positive and negative pairs for the decoder. Although fragments with similar context often
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generate false negative examples, the model learns to distinguish true matches effectively.
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Fig. 1. Diagram of the labeling process and pattern selection.

Fig. 2. Example of the attention strength per points.

4. Example results

Figure 3 presents several examples of labeling produced by our method. The process begins with
the user selecting a pattern of interest. The encoder generates a corresponding global descrip-
tor. During labeling, the user paints over fragments of the point cloud which are encoded and
labeled by the decoder based on their similarity to the selected pattern. If the model incorrectly
labels regions from other objects, especially near class boundaries, the user can mark them as
negative examples to suppress their influence. This usually improves accuracy. However, using
larger brush sizes increases the influence of the global descriptor over local descriptors, which
may lead to boundary mislabeling. The encoder’s attention mechanism, shown in Figure 2, high-
lights salient features such as edges or color outliers and distributes attention more evenly across
flat regions. As a result, points near class boundaries contribute more strongly to the global de-
scriptor, which can intensify labeling errors when using larger brushes. The method was tested
on a laptop with an NVIDIA RTX 3050 GPU (4 GB) and 32 GB of RAM. This setup supported
loading and displaying up to eight scenes with about 14 million points, rendered using the in-
tegrated Intel GPU. The model was run on the NVIDIA GPU. Larger brushes increased data
transfer between the rendering and prediction components, becoming a performance bottleneck.
The most effective configuration used a brush that covered around 1,000 points. Additional
tests with a single GPU improved rendering performance, but required limiting brush size and
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the number of scenes due to memory constraints. Moreover, data transfer between OpenGL and
PyTorch remained a limiting factor.
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Fig. 3. Interactive labeling example.

Conclusions

The proposed method enables interactive, semi-automatic labeling of arbitrary point clouds
through descriptor-based pattern recognition. It provides users with intuitive control over the
labeling process and allows refinement via positive and negative example selection. While the
approach offers effective and user-friendly labeling, certain challenges arise when larger brush
sizes are used. These include the increased influence of the global descriptor on boundary points
and the additional overhead caused by data transfer between the rendering (OpenGL) and pre-
diction (PyTorch) devices. Despite these limitations, the method remains a practical assistive
tool, offering users full control and the ability to manually refine labeling results as needed.
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