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Abstract

The widespread adoption of smart mobile devices (SMDs) with advanced computing capabili-
ties presents a valuable resource for mobile crowd computing (MCC). Efficient task scheduling
in MCC relies on selecting the right SMDs, which poses a complex multi-criteria decision-
making challenge due to the diverse hardware specifications of the devices and the presence of
non-compensatory parameters. Traditional multi-criteria decision analysis (MCDA) methods,
such as the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), typi-
cally assume full compensability between criteria. However, this assumption may conflict with
strong sustainability principles. To tackle this issue, the authors introduce the Strong Sustain-
ability Paradigm based Technique for Order Preference by Similarity to Ideal Solution (SSP-
TOPSIS) method, an extended version of TOPSIS that incorporates linear compensation reduc-
tion. This enhancement allows for a more accurate reflection of sustainability requirements in
the decision-making process. The SSP-TOPSIS method demonstrates improved analytical ca-
pabilities compared to classical TOPSIS and provides a framework that supports sustainability-
driven decisions.

Keywords: SSP-TOPSIS, Strong sustainability paradigm, Mobile crowd computing, Mobile
cloud computing, Smart mobile devices multi-criteria selection.

1. Introduction

The advancement of electronics and the increasing trend towards miniaturization have led to a
rise in the popularity of smart mobile devices (SMDs), which offer significant computing capa-
bilities [1]]. As a result, SMDs - particularly smartphones and tablets - are preferred by users,
often serving as their primary computing devices over laptops and desktops [9]. These devices
possess substantial computing resources that can be utilized by applications requiring additional
processing power for compute-intensive tasks when they are not in use by their owners [§]].
By connecting these unused computing resources, we can foster an economical and sustainable
environment. Public SMDs, whose owners have agreed to make their computing resources avail-
able can be employed as computing resources in mobile crowd computing (MCC), effectively
creating a mobile cloud computing [2]].

The efficiency and reliability of MCC heavily depend on the selection of suitable resources
for scheduling tasks. Given the diverse specifications that encompass various criteria and the
wide range of available SMDs, choosing the right SMD or combination of SMDs for MCC ser-
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vices presents a multi-criteria problem. In this context, multi-criteria decision analysis (MCDA)
methods can be effectively applied [6].

SMD computing resources are specified by the criteria used for selection. Choosing SMDs
based on their parameters, which often conflict with one another, can be complex. Additionally,
these parameters are not interchangeable, as each one serves a specific function. For instance,
computational capability influences response time, throughput, and task execution time. SMDs
are also highly diverse in terms of hardware characteristics, including CPU and GPU clock
frequency, the number of cores, sizes of primary and secondary memory, battery capacity, and
varying computing capabilities [7]].

The multi-criteria problem of selecting smart mobile devices (SMD) for mobile crowd com-
puting (MCC) necessitates a preference for sustainable alternatives while adhering to the prin-
ciples of the strong sustainability paradigm [4]]. This approach emphasizes the need to limit the
linear compensation of criteria. Linear compensation implies that excellent values achieved for
several criteria can compensate for poor values in other criteria. It is undesirable when search-
ing for balanced alternatives, which should achieve good values for as many criteria as possi-
ble [10]]. Although some multi-criteria decision analysis (MCDA) methods, such as those in the
PROMETHEE (Preference Ranking Organization METHod for Enrichment of Evaluation) or
ELECTRE (ELimination and Choice Expressing the Reality) families, respect these limits on
criteria compensation, the most popular MCDA methods - such as TOPSIS, AHP (Analytical
Hierarchy Process), and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) -
tend to be compensatory in nature [5]. To address this gap, the authors propose a multi-criteria
approach called the Strong Sustainability Paradigm based Technique for Order Preference by
Similarity to Ideal Solution (SSP-TOPSIS) method, that enhances the well-established TOPSIS
method. This enhancement allows for modeling the degree of linear compensation reduction
among criteria, thereby adapting compensatory MCDA methods for evaluating multi-criteria
problems within the context of the strong sustainability paradigm.

2. Methodology

The Strong Sustainability Paradigm based Technique for Order Preference by Similarity to Ideal
Solution (SSP-TOPSIS) method is based on the well-known Multi-Criteria Decision Analysis
(MCDA) technique called TOPSIS, which evaluates variants by measuring their distances from
two vectors representing two reference solutions, which are ideal and anti-ideal. The presented
approach introduces a novel phase that addresses the limitation of many multi-criteria methods
related to criteria compensation reduction, which involves a calculation known as the reduc-
tion of linear compensation. It is achieved by performing subtraction of the Mean Deviation
(M D) from the efficiency value from the decision matrix. The M D is calculated by subtract-
ing the mean performance for particular criteria calculated for all variants from the alternative’s
efficiency. Then, multiplying the obtained outcome by the sustainability coefficient s used to
model the reduction of linear compensation is performed. s may be set to real values from 0 to
1. In its simplest form, it may be adjusted to the standard deviation of numbers contained in the
decision matrix after normalization. The sustainability coefficient parameter can be compared
to the s coefficient introduced in the PROSA-C method (PROMETHEE for Sustainability As-
sessment - Criteria) [10]], which also considers compensation reduction. PROSA-C can be used
as the reference method for comparing SSP-TOPSIS results. The commonly used value for the
s parameter based on literature [[10] is 0.3, which can also be used in the case of SSP-TOPSIS.
To assign weights to the criteria that reflect their importance, the authors used Criteria Im-
portance Through Inter-criteria Correlation (CRITIC) which is an objective weighting method.
This method determines the weights of the criteria based on the numbers provided in the de-
cision matrix, taking into account the variability of each criterion among the alternatives. The
CRITIC method was chosen because it provides an objective strategy for estimating criterion
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weights based on the intensity of contrast and conflict between criteria, avoiding the ambiguity
resulting from expert opinion [3]]. The detailed steps of the SSP-TOPSIS method are provided
below.

2.1. The SSP-TOPSIS method

Step 1. Create the two-dimensional decision matrix X = [z;]mxn With efficiency values
x;j collected for m alternatives regarding n criteria. Subtract the mean value 7; from z;; for
particular criteria C}j, obtaining the Mean Deviation M D;;. After that, multiply the outcome of
the previous operation by the sustainability coefficient (s;) reflecting the rate of compensation
reduction for each criterion. Considered criteria representing parameters are enumerated by
j =1,2,...,n. The sustainability coefficient takes real numbers from 0 to 1. The higher the
coefficient value, the higher the compensation reduction. The Mean Deviation is calculated by
Equation (1J.

MD;; = (:Uij —fj)Sj (1

Step 2. Match zeros to M D_;; less than zero. If M D_;; is less than zero it implies that z_;; is
less than 7 ;. Associate zeros to M D_;; bigger than zero. It means that x_;; are bigger than
T_;. This action is performed according to Equation (2)),

MDU:OVMD+Z']'<O V MDfij>0 2)

where M D_;; represents the mean deviation computed for criteria with the goal of maximizing,
and M D_;; defines the mean deviation determined for criteria with the aim of minimizing. The
discussed phase is important since it allows to avoid unintended improvements of efficiency
values outlying from the mean towards deterioration.

Step 3. In this step M D;; values have to be subtracted from x;; following Equation (3)).

tij = xij — M Dy 3
The remaining stages are performed analogously to the primary TOPSIS method.
Step 4. Perform the normalization of the decision matrix 7" = [t;;]n,x» With the preferred tech-
nique, for example, the Minimum-Maximum or Vector, which is used in the TOPSIS method
by default. Using the Minimum-Maximum method, ri'; representing normalized numbers for
criteria with the goal of maximizing (stimulants) and ,; denoting criteria with the goal of min-
imizing (destimulants) are derived with Equation (@). The Minimum-Maximum technique is
more widely applicable because it can also be used for negative values.
o ti; — min;(t;;) —— maxj(tij) — tij @

o maz(tiy) — ming(tiy)” Y maxg(tiy) — ming (ti;)

Step 5. Obtain the weighted normalized decision matrix by multiplying numbers included in
the normalized decision matrix by appropriate criteria weights w; as Equation (5)) presents.

Vij = Tijw; (&)
The weights of the criteria assessment were computed by applying the CRITIC method.
Step 6. Establish the Positive Ideal Solution (PIS) with Equation (6 and Negative Ideal Solution
(NIS). PIS consists of the maximal numbers of the weighted normalized decision matrix. On
the other hand, NIS incorporates its minimums. Converting destimulants into stimulants is not
needed because of the normalization performed previously.

v = {vf,v5, oty = {max(vig)}, v = {or, vy, v, b = {ming(vi)} o (6)
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Step 7. Compute Euclidean distance from PIS Dj and NIS D, for particular variants as Equa-
tion (7) demonstrates.

)

Step 8. To determine the final result for evaluated variants, use Equation (§). The C; is between
0 and 1. The variant with the biggest C; is indicated as the ranking leader. Finally, variants are
ranked by sorting their scores by decreasing value.

Dy
DD ®

2.2. The dataset

A dataset has been utilized to demonstrate the application of the SSP-TOPSIS method for select-
ing the most sustainable alternative smart mobile devices (SMDs) for mobile crowd computing
(MCQ). This dataset, along with the evaluation criteria, is derived from the research paper by
Pramanik et al. (2021) [9]. Table [1] presents the criteria used to assess SMDs as resources in
MCC. Table 2] presents the performance values of selected SMDs in relation to the set of criteria
for assessment.

Table 1. List of assessment criteria.

Code | Criteria Unit Effect direction | Code | Criteria Unit | Effect direction
Ch CPU frequency GHz T Cg Wi-Fi strength 1-5 T

Cy CPU cores numbers T Co CPU load % J

Cs GPU frequency GHz T Cio | GPU load % J

Cy Total RAM GB T Ci1 CPU temp °C 1

Chs Available memory | MB T Ci12 | Battery temp °C J

Cs Battery capacity mAh T C13 | GPU Architecture | nm J

Cr Battery available | % 0

Table 2. Decision matrix including performance values for selected SMDs.

A, | C1 Cy (O3 Cy Cs C¢ C; Cg Cy Cyp Ci1 Cro Cig
Ay 1.3 8 650 8 1807 3000 10 4 13 8 31 38 10
Ao 2.5 2 450 6 1767 4000 24 2 53 93 45 44 10
As |22 8 650 6 1916 3000 11 1 19 77 32 39 14
Ay 1.7 2 450 6 2855 4000 22 5 62 9 32 40 10
As 1.5 4 624 6 2851 3500 31 4 71 2 39 42 10
Ag 1.3 4 1710 6 3537 3500 37 2 4 16 37 37 28
Aq 1.3 8 710 6 2755 3000 92 4 1 48 34 39 14
Ag 1.3 8 450 8 2690 4000 56 4 22 13 33 34 28
Ag |25 8 650 4 2628 3500 69 4 94 11 42 40 28
A | 1.3 8 450 6 1753 4000 29 3 91 64 39 45 28

These parameters are essential for evaluating the resource requirements of MCC computing
tasks. The computational capabilities of SMDs are determined by various resource parameters,
which include 13 SMD selection criteria. Among these parameters, eight are marked with an
upward arrow (1), indicating that higher values are preferred, while five are marked with a
downward arrow ({), signifying that lower values represent the most favorable choice.
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3. Results

This section presents the results of selecting the most sustainable option from a chosen set
of System-on-Module Devices (SMDs) using the SSP-TOPSIS method. The research utilized a
linear compensation approach to reduce criteria within each group of SMD parameters that serve
as evaluation criteria. The analysis was conducted for the following groups: CPU parameters
(C4, Cy, Cy, and C11), GPU parameters (C3, C1g, and C13), Battery parameters (Cg, C'7, and
C12), and Memory parameters (Cy4 and C’5). Criterion Cg has not been assigned to any group
but has been included in the final scenario that considers the reduction of compensation across
all parameters. The results for specific groups of parameters are presented in Table 3]

Table 3. Results of SSP-TOPSIS with sustainability coefficient set as standard deviation value in
particular groups of SMDs’ parameters.

A; None CPU GPU Battery Memory All | None CPU GPU Battery Memory All
Ar | 04122 04132 04187 04136 04125 04231 9 9 9 9 9 9
Az | 04678 04710 04678 0.4692  0.4704 0.4761 6 6 7 6 6 8
Az | 04642 04696 04763 0.4663  0.4681 0.4875 7 7 6 7 7 6
Ay | 03946 04057 03954 03979 04010 0.4161 10 10 10 10 10 10
As | 04372 04513 04470 0.4499  0.4445 0.4819 8 8 8 8 8 7
Ag | 04963 0.5033 0.4986 0.5069  0.4992 0.5208 4 4 5 3 5 3
A7 | 04951 0.4967 0.5040 0.4970  0.5009 0.5150 5 5 4 5 4 5
Ag | 0.5049 0.5079 0.5065 0.5064  0.5079 0.5155 3 3 3 4 3 4
Ag | 0.6343 0.6352 0.6411 0.6459  0.6386 0.6598 1 1 1 1 1 1
Aip | 05376 0.5396 0.5398 0.5393  0.5402 0.5484 2 2 2 2 2 2

The column titled "None” contains results for a scenario without compensation reduction
for any criterion, which is analogous to the classic TOPSIS method. The column called " All”
includes results for compensation reduction in all parameters. It is evident that, regardless of
the evaluated parameter group with reduced compensation levels, the highest-rated alternative is
consistently Ag. This indicates that the device performs favorably across most of the considered
criteria, allowing it to achieve good evaluation results even when compensation possibilities in
certain parameter groups are limited.

The alternative Ag achieved third place in all analyzed parameter groups, with the exception
of the Battery parameters and the group considering all parameters. When the compensation of
criteria was reduced in these two groups, Ag dropped to fourth place. This change occurred be-
cause Ag exhibited the most favorable values for the Battery capacity, Battery temperature, and
one of the most favorable values for the Battery availability parameters. Reducing compensation
in these groups limited the ability to compensate weaker values in the other criteria, resulting in
a lower score for Ag compared to scenarios where compensation was not reduced or adjusted for
the other parameter groups. Similar conclusions can be drawn for the other alternatives included
in the investigation.

The next stage of the investigation will involve gradually increasing the sustainability co-
efficient for each parameter group within the range of real numbers from O to 1. A value of 0
indicates no reduction in compensation at all, while a value of 1 signifies a maximum reduction
in compensation. Figure[la|illustrates the analysis of increasing compensation reduction within
the CPU parameters. The gradual reduction of compensation within GPU parameters is de-
picted in Figure[Ib] while Figure[Ic|presents the results for battery parameters, Figure[Id|covers
memory parameters, and Figure [Ie|consolidates all criteria. The graphs indicate that alternative
Ag, which was the leader in the first stage of the study, maintains its leading position in the
context of increasing compensation reduction across all analyzed criteria groups. This suggests
that alternative Ag is sustainable, as its performance across all parameters contributes to its top
ranking. Alternative A1y also demonstrates sustainability, consistently securing a stable second
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place in the rankings, with the exception of scenarios involving high compensation reduction

across all criteria.

Reduction of compensation in CPU parameters

Reduction of compensation in GPU parameters
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(a) SSP-TOPSIS ranks for increasing compen-
sation reduction in CPU parameters.
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(b) SSP-TOPSIS ranks for increasing compen-
sation reduction in GPU parameters.
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(c) SSP-TOPSIS ranks for increasing compen-
sation reduction in Battery parameters.
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(d) SSP-TOPSIS ranks for increasing compen-
sation reduction in Memory parameters.
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(e) SSP-TOPSIS ranks for increasing compen-
sation reduction in all parameters.

Fig. 1. SSP-TOPSIS ranks for increasing compensation reduction in particular groups of parameters.

One example of an alternative that demonstrates a declining trend in rankings due to an

increasing reduction in criteria compensation is Ag. When we consider the parameters of CPU,

GPU, Battery, and Memory within each group of criteria, Ag falls from third to fourth place as

compensation reduction increases. Conversely, when looking at all parameters collectively, Ag

drops by four positions, falling from third to seventh place. This indicates that there is a lack
of sufficiently favorable performance values across a wide range of parameters, which would
normally help this option secure a stable and high ranking, even with decreasing compensation
for the criteria. Poor performance of Ag is evident when compared to other alternatives that
have better outcomes, especially for parameters such as C', Cs, and C3. Furthermore, there are
several criteria - specifically Cs, C7, Cy, and C1 - where other alternatives achieve significantly

better performance values than Ag.
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The alternative that demonstrates significant potential for improvement, particularly with a
decreasing criteria compensation, is As. For instance, this option advanced by as much as six
positions, moving from eighth place to second place when the reduction in compensation was
applied across all parameters. This suggests that the performance values of this alternative are
sustainable, especially in contexts where decision-makers prioritize sustainability over excep-
tionally favorable values in specific parameter groups. In summary, the analysis clearly indicates
that the most preferred and sustainable SMD option among those considered is Ag.

The next step of the research was an empirical comparison of the SSP-TOPSIS method
with two other methods constraining compensation, namely PROMETHEE II and PROSA-C.
Figure [2a] shows the convergence of the SSP-TOPSIS ranking generated using a sustainability
coefficient s set as 0.6 for all considered parameters with the rankings of the TOPSIS compen-
sation method and the two compensation-limiting methods PROMETHEE II and PROSA-C, for
which the value of the coefficient s was set to 0.3. The Weighted Spearman correlation coeffi-
cient (r,,) was used as a measure of ranking convergence. It can be noted that the SSP-TOPSIS
and TOPSIS rankings differ because, although their correlation is high (0.9152), it is lower than
1, which indicates the existence of differences resulting from the reduction of compensation by
SSP-TOPSIS. On the other hand, although the PROMETHEE II ranking is less consistent with
SSP-TOPSIS compared to TOPSIS, which results from differences in algorithms, the correlation
value between SSP-TOPSIS and PROMETHEE 11 is still high. Particularly noteworthy is the
correlation between the SSP-TOPSIS and PROSA-C rankings (0.9636), which is higher than
that between TOPSIS and PROSA-C (0.8920) and between SSP-TOPSIS and TOPSIS. This
means that the SSP-TOPSIS method reduces compensation to a greater extent, giving results
similar to other methods with limited compensation like PROSA-C.

Then, a study was conducted on the correlation between the SSP-TOPSIS ranking and TOP-
SIS, PROMETHEE II, and PROSA-C for increasing values of the sustainability coefficient in
SSP-TOPSIS. Results are shown in Figure 2b]

Correlation: r,, Compared MCDA methods
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(a) Correlation of SSP-TOPSIS with reference (b) Correlation of SSP-TOPSIS with reference
methods for the constant s coefficient. methods for the increasing s coefficient.

Fig. 2. Correlation of SSP-TOPSIS with reference MCDA methods.

It can be observed that as compensation in SSP-TOPSIS decreases, the correlation with the
compensatory TOPSIS method decreases. In contrast, in the case of PROSA-C, the correlation
with SSP-TOPSIS increases, especially for s € {0.4,0.5,0.6,0.7}. For larger values of s,
the correlation between SSP-TOPSIS and PROSA-C decreases. However, it is higher than for
TOPSIS, which confirms the ability of the SSP-TOPSIS method to reduce compensation.

4. Conclusions

This paper introduces a multi-criteria SSP-TOPSIS method that incorporates linear compensa-
tion reduction modeling for evaluating criteria. It demonstrates the method’s effectiveness in
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addressing multi-criteria selection problems for SMDs within the context of MCC. The integra-
tion of compensation reduction modeling enhances the analytical capabilities of the traditional
TOPSIS method, allowing for the identification of more sustainable solutions. Future work
should focus on enhancing the model by including additional evaluation criteria, utilizing a
broader dataset with more alternatives, and expanding other multi-criteria methods to support
compensation reduction modeling capabilities.
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