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Abstract

We present a method for content-based retrieval of solar magnetograms using semantic hash-
ing. Based on HMI data from SDO and implemented with SunPy and PyTorch, the approach
encodes magnetic regions as fixed-length vectors, avoiding full-disk image processing. A fully
connected autoencoder compresses 400-dimensional descriptors into 50-dimensional semantic
hashes. Experiments show that our method outperforms state-of-the-art techniques in precision
and is also applicable to solar image classification.
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1. Introduction
The Solar Dynamics Observatory (SDO), part of NASA’s Living With a Star (LWS) program,
continuously observes the Sun at high spatial and temporal resolutions across multiple wave-
lengths [1]. Among its instruments, the Helioseismic and Magnetic Imager (HMI) measures
solar surface oscillations and magnetic fields, providing data such as dopplergrams, continuum
filtergrams, and magnetograms. This work addresses efficient retrieval of HMI magnetograms
with similar magnetic structures. Given SDO’s high data volume, manual analysis is infeasible.
Existing image retrieval techniques are not well-suited for solar data. To overcome this, we
apply semantic hashing, which maps high-dimensional inputs to compact binary codes while
preserving similarity [3], [8], [11]. Section 2 details our hashing method. Experimental valida-
tion is provided in Section3, followed by conclusions and future work in Section 4.

2. Proposed Method for Solar Magnetogram Hashing
SDO instruments enable multi-wavelength solar imaging (e.g., via AIA) and the creation of de-
tailed magnetograms depicting the solar magnetic field. In active regions, field strengths can
exceed typical values by over three orders of magnitude. Given their full-disk coverage, mag-
netograms support diverse solar physics analyses. We utilize magnetograms for solar image
representation and hashing, positing that magnetic data improves retrieval precision by sup-
pressing irrelevant noise. Unlike intensity-based images (often affected by transient phenomena
like flares) magnetograms provide a more stable and physically grounded view of solar activity.
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This makes them well-suited for image retrieval and classification tasks. This section presents
the key steps of the proposed hashing approach.

2.1. Magnetic Region Detection

The first step involves preprocessing the magnetogram to enhance magnetic region visibil-
ity—termed magnetic region detection (MRD) (Fig. 1a). Magnetogram data were acquired
using the SunPy library [10], [12], enabling estimation of field strength across the solar surface.
As shown in Fig.1a, magnetic fields intensify near active regions. We map field strength to im-

(a) Magnetic region detection and annotation pro-
cess. Magnetic regions can be clearly visible. (b) A magnification of magnetic regions.

Fig. 1. Magnetic region detection and their magnification.

age intensity (Fig.1b), revealing magnetic regions (MRs) that influence solar dynamics. MRs
are closely linked to CMEs and flares, especially where opposite polarities–red (north) and blue
(south)–interact. Identifying and tracking MRs is thus essential for flare prediction and forms a
critical input for the next algorithmic stages.

2.2. Calculation of Magnetic Field Grid-based Descriptor

This section describes the Magnetic Field Grid-based Descriptor. To reduce the computational
load of full-disk image analysis, we represent the Magnetic Region Intensity Image (MRI, see
Section 2.1) using a regular N ×M grid. Each row yields a magnetic field intensity histogram
by aggregating values across its cells, producing M histograms. These are concatenated into a
single descriptor vector (MFGDV) for a compact representation.

All the steps described above are presented in Fig. 2 and in Alg. 2 respectively. Based on a
series of experiments and simulations, we determined that setting both parameters N and M to
5 produces the most effective results for our solution. Every histogram has fixed values between
[-1000;1000] Therefore, we have 16 values for each cell of the grid, thus finally MFGDV has
400 values.

2.3. Hash Generation

This section outlines the hash generation process, which encodes the Magnetic Field Grid-Based
Descriptor Vector (MFGDV) into a compact binary form. The goal is to produce a representa-
tive hash of solar magnetic structures at a given time, enabling efficient retrieval (see Section
2.4). We use a fully connected autoencoder (AE) to compress MFGDV into a lower-dimensional
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Fig. 2. Algorithm steps for calculating the Magnetic Field Grid-Based Descriptor Vector.

latent space. Due to their ability to preserve semantic content in an unsupervised manner, AEs
are well-suited for generating compact, content-aware hashes [4],[7]. The autoencoder archi-
tecture is shown in Table 1. It provides effective dimensionality reduction while preserving key
magnetic region features. Only the encoder is used for hash generation; the decoder serves train-
ing purposes to minimize reconstruction error. Training for 40 epochs yielded a good balance
between generalization and overfitting, producing stable and meaningful hashes.

2.4. Retrieval

For retrieval, we use the Hierarchical Navigable Small World (HNSW) algorithm [9] to perform
approximate nearest neighbor (ANN) search in the image embedding space. HNSW constructs
a multilayer proximity graph G = (V,E), where each node represents an image embedding
vector xi ∈ Rd. The graph is organized into a hierarchy of layers L0, L1, . . . , Lmax, with L0

containing all data points and each layer Ll (l > 0) being a progressively sparser subset. The
probability of assigning a node to level l follows P (lmax = l) ∼ e−λl, ensuring an average
logarithmic hierarchy depth. During indexing, each vector xi is inserted using greedy search
from the top layer down to L0, connecting to M nearest neighbors while preserving the small-
world property. At query time, a query vector q ∈ Rd initiates a top-down search, refining a
candidate list C by minimizing a distance function, typically D(q,xi) = ∥q− xi∥2, or, for
normalized embeddings, cosine similarity cos(q,xi) = (q · xi)/(∥q∥ ∥xi∥). The final nearest
neighbors are selected in layer L0, with optional reranking. The expected time complexity
of HNSW queries is O(logN), making it suitable for high-dimensional image retrieval. We
incorporate HNSW into our system to ensure scalable and accurate retrieval of magnetogram-
based image hashes.
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Table 1. Tabular representation of the fully-connected autoencoder (input = 400, latent = 50).

Layer (type) Output Filters (in, out) Params
Input (InputLayer) [1, 400] 0
Linear_1 (Linear) [1, 200] 400, 200 80,200

ReLU_1 [1, 200] 0
Linear_2 (Linear) [1, 100] 200, 100 20,100

ReLU_2 [1, 100] 0
Linear_3 (Linear) [1, 50] 100, 50 5,050

ReLU_3 [1, 50] 0
Encoded (latent-space) [1, 50]
Linear_4 (Linear) [1, 100] 50, 100 5,100

ReLU_4 [1, 100] 0
Linear_5 (Linear) [1, 200] 100, 200 20,200

ReLU_5 [1, 200] 0
Linear_6 (Linear) [1, 400] 200, 400 80,400

ReLU_6 [1, 400] 0
Decoded (Tanh) [1, 400]

3. Experimental Results
This section presents simulation results and our evaluation approach using unlabeled solar im-
ages. Due to the lack of ground-truth labels, we applied unsupervised learning to encode de-
scriptors, leveraging the Sun’s rotation as a form of natural supervision to define sets of similar
images (SI). Our key assumption is that images taken within short temporal intervals depict the
same active regions with minor positional shifts. Images were sampled every 6 minutes, with
high visual similarity expected across consecutive frames. Based on experiments, we defined
a temporal similarity window of 48 hours. For instance, an image from 2012-06-15 00:00:00
has its SI set drawn from the 24 hours before and after that timestamp. This assumption en-
ables practical performance evaluation of our hashing method. Each experiment followed these
steps: (1) submit a query image and retrieve results using the hash; (2) compare retrieved image
timestamps; (3) classify images as similar if they fall within the 48-hour window.

Once the set of similar images (SI) is identified, standard performance metrics such as pre-
cision and recall can be calculated, as discussed in works such as [5],[13]. These metrics are
based on the following sets: SI - set of similar images; RI - set of retrieved images for query;
PRI(TP ) - set of positive retrieved images (true positive); FPRI(FP ) - false positive re-
trieved images (false positive); PNRI(FN) - positive, not retrieved images; FNRI(TN) -
false, not retrieved images (TN). We compared our method with state-of-the-art approaches [3].
Our method achieved an average precision of ≈ 0.930, outperforming Banda et al. (0.848),
Angryk et al. (0.850) [3],[2], and Grycuk et al. [6].

Most solar images that were temporally and structurally close to the query were correctly
retrieved. In contrast, relevant but not retrieved images (PNRI) generally had larger temporal
offsets. However, their occurrence was notably lower than in previous studies. Elevated PNRI
values are primarily due to solar dynamics, especially rotation which can shift or obscure active
regions even within a 48-hour window.

4. Conclusions
We proposed a semantic hashing method for retrieving structurally similar solar magnetograms
based on HMI data from SDO, using SunPy and PyTorch. Magnetic regions were encoded as
fixed-length vectors, enabling efficient comparison in a 50-dimensional space. A fully connected
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autoencoder reduced the 400-dimensional MFGDV to a compact semantic hash. Our method
achieved the highest precision among the state-of-the-art techniques. Beyond retrieval, it is also
suitable for classification tasks. Using magnetograms, less affected by transient noise than AIA
images, the method yields robust and noise-resistant representations.
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