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Abstract

LoRaWAN networks, which are extremely popular today, are based on the LoRa protocol and
offer very long communication ranges, but they also come with significant limitations. These
limitations stem primarily from two factors: duty cycle and maximum message size. During im-
age transmission over LoRa-based networks, packet loss is a common problem resulting from
limited bandwidth and transmission interference. During image transmission, it leads to miss-
ing data in the received content, most often visible as vertical or horizontal lines. We present
a method to repair such corrupted images using a fully convolutional neural network inspired
by the U-Net architecture. The experiments carried out show that the proposed approach ef-
fectively reconstructs missing parts of the image, achieving high structural similarity (SSIM) to
the original. The proposed method can be applied to image transmission and reconstruction on
low-power devices, typical of IoT systems that use LoRa for communication.
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1. Introduction
The LoRa (Long Range) technology [2] was designed for long-range communication of small
data packets with minimal energy consumption. Due to its features, such as low power require-
ments, long battery life, and wide coverage, it is primarily used in Internet of Things (IoT)
systems [10], including environmental sensors [7], utility meters [5], and localization systems
[6]. However, using LoRa for image transmission poses a non-standard and technologically
challenging use case. The standard is designed for small data frames, and transmitting images,
even highly compressed and in grayscale, significantly exceeds the typical usage range of this
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technology. In practice, this leads to the fragmentation of data into smaller packets that are prone
to transmission errors, interference, and loss, resulting in significant distortions in the received
images. Typical artifacts caused by packet loss include horizontal or vertical lines, missing frag-
ments, and zeroed-out pixel regions. To enable effective use of LoRa for image transmission,
it becomes necessary to develop additional reconstruction mechanisms to recover lost data on
the receiver side. The technological advancement in IoT systems has revolutionized the way
we communicate, process data and make decisions. One of the key elements of this transforma-
tion is communication technologies such as LoRa, which enable long-range and energy-efficient
data transmission in distributed IoT environments. LoRaWAN, as one of the most popular IoT
standards, is dynamically evolving in applications such as smart cities, precision agriculture,
and Industry 4.0 [8], where it is used for monitoring, management, and data analysis from
machines and production systems. An example of a study addressing image transmission us-
ing LoRa technology is presented in [4]. The authors proposed a protocol based on sending
multiple packets in batches and retransmitting only those that were not acknowledged by the
receiver. However, this method does not implement any advanced error correction mechanisms
(e.g., FEC) or techniques for reconstructing lost data, which means the image must be trans-
mitted repeatedly until all packets are fully acknowledged. In contrast, the solution proposed in
this paper eliminates the need to retransmit identical data. Instead, it introduces a receiver-side
mechanism for reconstructing missing parts of the image using deep learning. This approach
not only reduces the transmission time and network load, but also enables effective recovery of
visual content under conditions with high error rates and packet loss. An alternative method
is described in [13], where the authors focused on reducing the data volume transmitted over
LoRa by applying WebP image compression and Base64 encoding. This reduced the number of
packets needed to transmit a single image from 81 to 23, effectively shortening the transmission
time by nearly 50%. However, the method does not include any mechanisms for recovering
lost packets: there is no retransmission or error correction. As a result, any missing data results
in an incomplete image, with no reconstruction performed on the receiver side. Packet loss in
LoRa networks remains a significant challenge, especially in applications requiring precise data
transmission, such as images. Existing methods for reconstructing corrupted data have mostly
relied on simple linear interpolation, packet retransmission, or error-correcting codes. These
methods often prove insufficient due to the non-linear nature of distortions and lack of contex-
tual information. Therefore, it is necessary to develop new data reconstruction mechanisms on
the receiver side that can effectively handle complex transmission errors in LoRa channels. In
this context, modern image reconstruction methods, especially those based on the U-Net neural
network architecture, offer new possibilities to improve data integrity. Such approaches enable
the restoration of high-quality images even in cases of partial data loss. The Structural Similarity
Index (SSIM) plays a key role in evaluating reconstruction quality.

Our approach to optimizing image transmission in IoT systems, which incorporates LoRa
networks, image reconstruction mechanisms, and metrics such as SSIM, aims not only to min-
imize the impact of packet loss but also to improve the efficiency and quality of transmission
in complex network environments. This opens new application possibilities for LoRaWAN in
visual monitoring systems in hard-to-reach areas, where traditional video transmission technolo-
gies are impractical due to energy or cost constraints.

The remainder of this paper is organized as follows. In Section 2, we present challenges re-
lated to image transmission over LoRa networks, including packetization strategies and typical
types of distortion. Section 3 describes the architecture of the proposed U-Net-based recon-
struction model. Section 4 outlines the training procedure, including details of the data set and
optimization parameters. The experimental results are presented and discussed in Section 5.
Finally, conclusions and future research directions are provided in Section 6.
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Fig. 1. Diagram of the overall image transmission and reconstruction process: from the source
image, through compression and transmission, to reconstruction using the proposed neural
model.

2. Problem description and data
In many water supply installations, traditional analog water meters are still in use and lack an
output interface for pulse reading [1]. Replacing them with modern meters capable of generating
digital signals involves very high costs, both in terms of hardware and the logistics of deploy-
ment. An alternative solution is to use cameras that capture images of the meter dials, which are
then analyzed to extract the numerical readings. Applying LoRa technology to transmit such
images makes it possible to build a remote reading system without the need to interfere with the
existing water meter infrastructure. The data set presented in this work reflects such a scenario:
images were generated based on data obtained from real-world LoRa-based water meter image
transmission systems.

In its typical application, LoRa technology is used to transmit small amounts of data, such as
sensor readings or location information. However, when it comes to transmitting images, even
highly compressed and grayscale significant challenges emerge due to LoRa’s limited band-
width and susceptibility to transmission errors. Under standard conditions, the maximum size
of a single data packet is restricted, which forces an image to be divided into many small frag-
ments. If some of these packets are lost, the receiver is unable to reconstruct the full content,
resulting in visible image distortions. In this work, we propose two approaches for transmit-
ting images over a LoRa network: (1) Classical line-wise splitting – each packet corresponds
to one full row of the image. If such a packet is lost, the row is replaced with pixels of zero
value (black stripes). (2) Interleaved packet splitting – each packet contains only a portion of a
line, with gaps every few pixels (e.g., only every other fragment is sent). If an error or packet
loss occurs, the result is broken, discontinuous lines. All data used in the experiment were
generated on the basis of real images of water meters transmitted through a LoRa-based com-
munication system. The images were resized to 128 × 128 pixels in grayscale. From these, a
training and test dataset was prepared, in which synthetic distortions were added to the original
images to simulate typical transmission errors, following the two described variants: full-line
and interleaved-line corruption. To better illustrate the impact of transmission errors, Figure 2
shows an example image in three variants: original (undistorted), corrupted with full black lines
(simulating traditional packet loss), and corrupted with interleaved lines (simulating fragmented
packet transmission). For training and evaluation purposes of the proposed model, a dataset of
100,000 synthetically corrupted 128 × 128 pixel images was prepared. The dataset was evenly
divided into 50,000 samples that contained full-line distortions (variant 1) and 50,000 samples
contained interleaved-line distortions (variant 2). Each sample consisted of a pair: an input
(corrupted) image and a reference (original) image. The data were split 80:20 into training and
validation sets while maintaining balance between the distortion types.

A custom transmission module based on the ESP32 microcontroller was developed, inte-
grating an OV2640 camera and an RFM95W LoRa transceiver. The ESP32, equipped with
Wi-Fi, Bluetooth, 520kB SRAM and 4MB Flash memory, was responsible for control and im-
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Fig. 2. Original water meter image (left), and its two corrupted versions: with full black lines
(middle) and interleaved lines (right), corresponding to different types of LoRa transmission
errors.

age processing [12]. The OV2640 sensor (up to 2MP) captured images of water meters, which
were downscaled to 128× 128 grayscale resolution. The image fragments were transmitted via
the RFM95W module operating in the 868MHz band, which offers long-range communication
with low energy consumption. The system operated in cycles: the camera captured an image,
which was then processed and split into packets transmitted via LoRa to the receiver. Recep-
tion was handled by a MikroTik LoRa gateway configured as a data concentrator. The received
packets were sent to a custom server-side service designed for the project. Its responsibilities
included reassembling received packets, identifying missing segments, and storing and archiv-
ing the data. Each packet contained the following information: transmitter device identifier,
image offset indicator, transmission metadata (block size, data format, encoding method), and
binary payload – image fragment. This enabled asynchronous and distributed reconstruction of
the image in server memory. Once all packets were received, the complete image transmitted
from the remote device was reconstructed.

3. U-Net-inspired architecture for image reconstruction
To solve the task of reconstructing images transmitted in a non-continuous and potentially cor-
rupted form, we employed a convolutional neural network based on the U-Net architecture.
Originally designed for medical image segmentation, the U-Net structure has also proven ef-
fective in reconstruction tasks, thanks to its symmetric design and the use of so-called skip
connections [14]. In our case, the U-Net model was used to restore the original grayscale image
128 × 128 from a distorted version, which contained random artifact lines or missing pixels
resulting from packet loss. The structure of the network is illustrated in Figure 3. The input im-

Fig. 3. Architecture diagram of the proposed model for grayscale image reconstruction. Left: en-
coder part, center: bottleneck, right: decoder part with skip connections.
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age is processed through the encoder (blue-orange blocks), which performs feature extraction
while reducing spatial resolution. This is followed by the bottleneck layer in the middle, and
then the decoder (green-blue blocks) restores the full resolution of the image. Skip connections
(Concat) link layers of the same resolution in the encoder and decoder, allowing the network
to preserve local structural details. The model consists of three main components: the encoder,

Table 1. Proposed neural model architecture for image reconstruction (input: 1 × 128 × 128)

Stage Layer type Parameters Output size
Input - Grayscale image 1 × 128 × 128
Encoder Conv2D + ReLU 64 filters, 3 × 3, padding=1 64 × 128 × 128
Encoder Conv2D + ReLU 64 filters, 3 × 3, padding=1 64 × 128 × 128
Encoder MaxPool2D 2 × 2 64 × 64 × 64
Encoder Conv2D + ReLU 128 filters, 3 × 3, padding=1 128 × 64 × 64
Encoder Conv2D + ReLU 128 filters, 3 × 3, padding=1 128 × 64 × 64
Encoder MaxPool2D 2 × 2 128 × 32 × 32
Encoder Conv2D + ReLU 256 filters, 3 × 3, padding=1 256 × 32 × 32
Encoder Conv2D + ReLU 256 filters, 3 × 3, padding=1 256 × 32 × 32
Encoder MaxPool2D 2 × 2 256 × 16 × 16
Bottleneck Conv2D + ReLU 512 filters, 3 × 3, padding=1 512 × 16 × 16
Bottleneck Conv2D + ReLU 512 filters, 3 × 3, padding=1 512 × 16 × 16
Decoder Upsample (bilinear) scale=2 512 × 32 × 32
Decoder Concat (skip) from 256 × 32 × 32 768 × 32 × 32
Decoder Conv2D + ReLU 256 filters, 3 × 3 256 × 32 × 32
Decoder Conv2D + ReLU 256 filters, 3 × 3 256 × 32 × 32
Decoder Upsample (bilinear) scale=2 256 × 64 × 64
Decoder Concat (skip) from 128 × 64 × 64 384 × 64 × 64
Decoder Conv2D + ReLU 128 filters, 3 × 3 128 × 64 × 64
Decoder Conv2D + ReLU 128 filters, 3 × 3 128 × 64 × 64
Decoder Upsample (bilinear) scale=2 128 × 128 × 128
Decoder Concat (skip) from 64 × 128 × 128 192 × 128 × 128
Decoder Conv2D + ReLU 64 filters, 3 × 3 64 × 128 × 128
Decoder Conv2D + ReLU 64 filters, 3 × 3 64 × 128 × 128
Output Conv2D + Sigmoid 1 filter, 1 × 1 1 × 128 × 128

decoder, and skip connections. The encoder is responsible for extracting features from the input
image. It includes convolutional layers with ReLU activation and max-pooling layers that re-
duce the resolution from 128× 128 to 16× 16 pixels, while increasing the number of channels
to 512. The decoder reconstructs the full image resolution. It uses bilinear upsampling [9] fol-
lowed by convolutional layers. This approach, aligned with the original U-Net architecture by
Ronneberger et al. [11], ensures simplicity and model stability. Skip connections recover local
details lost during downsampling and enhance reconstruction fidelity. The output of the model
is a convolutional layer with a 1 × 1 filter and a sigmoid activation function, which maps pixel
values to the [0, 1] range. Before saving the output image, the pixel values are multiplied by
255 to restore the full grayscale intensity. To evaluate the quality of image reconstruction, we
use the SSIM metric [3], which compares two images in terms of their structure, luminance and
contrast. Unlike traditional pixel-based metrics, such as MSE or PSNR, SSIM is designed to
better reflect human visual perception. SSIM between images x and y is computed using

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(1)

where µx, µy is the mean luminance values of images x and y, σ2
x, σ

2
y is the luminance variance

of the images, σxy is covariance between x and y, and C1, C2 are stabilization constants to
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avoid division by zero. The constants are defined as C1 = (K1L)
2, C2 = (K2L)

2, where L
is the maximum pixel value (255 for 8-bit images), with K1 = 0.01 and K2 = 0.03. SSIM
is calculated locally using small windows (e.g. 11 × 11), and the final score is obtained by
averaging over the entire image, ensuring sensitivity to local structural distortions. The resulting
value ranges from 0 to 1, where 1 indicates perfect structural similarity.

4. Network training
The model was implemented using the PyTorch library and trained on synthetically distorted
data, including transformations such as image rotation, skewing, and shadowing. The optimiza-
tion of the model parameters was performed using the Adam algorithm. with default momentum
coefficients β1 = 0.9 and β2 = 0.999. The learning rate was set to a constant value of 0.001.
The training process was conducted over 50 epochs using a mini-batch size of 32. To assess the
quality of image structure reconstruction, we used the SSIM as validation metric. SSIM takes
into account contrast, luminance, and local structural consistency. For each epoch, we computed
the loss value for the training set and the SSIM value for the validation set, enabling effective
monitoring of training progress and detection of overfitting. MSE measures the average squared
difference between the original and reconstructed images. Lower MSE values indicate a closer
match between the two. The advantages of MSE include its simplicity, differentiability, and nu-
merical stability, making it well suited for gradient-based optimization in neural networks. For
grayscale images, pixel values are compared directly in the range of 0 to 1. The resulting loss
value also lies between 0 and 1, where values closer to 0 indicate better reconstruction fidelity.
Although MSE does not account for structural information, it remains a practical tool for quick
and effective assessment of pixel-level accuracy in image reconstruction tasks.

5. Experimental results
Our model was trained on a dataset consisting of 100,000 images of water meters with syntheti-
cally simulated transmission artifacts, evenly divided into samples with full-line and fragmented-
line distortions. The training process was repeated 20 times and was based on learning with
training data in the form of 15 epochs using the MSE loss function and the structural SSIM met-
ric to assess the quality of reconstruction. The suggested number of iterations did not result in
further improvement in the quality of image reconstruction, measured by the SSIM coefficient.
In contrast, it led to overfitting, which resulted in worsening results in the validation set. To

Table 2. Impact of U-Net width (scaling factor of feature map count) on reconstruction quality

Feature maps scaling factor No. of features in layer 1 SSIM (%) MSE error (%)
×0.25 16 90.1% 28.5%
×0.5 32 93.5% 24.7%
×1.0 64 95.9% 14.2%
×1.5 96 95.3% 16.1%
×2.0 128 94.6% 17.4%

determine the optimal depth of the model, experiments were conducted with different numbers
of feature channels in the convolutional layers of the U-Net network. For each configuration, the
model was trained using the same dataset and number of epochs. The results are presented in
Table 2. The best reconstruction quality (highest SSIM and lowest MSE) was achieved for the
scaling factor ×1.0, which corresponds to 64 feature channels in the first layer. Smaller models
(×0.25, ×0.5) showed signs of underfitting (low SSIM, high MSE), while larger configurations
(×1.5, ×2.0) led to overfitting, as indicated by the degradation of validation metrics. There-
fore, the ×1.0 configuration was selected as a compromise between performance, accuracy, and
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computational complexity. Figure 4 shows the evolution of the loss values for the training and

Fig. 4. Training performance of the model – loss values (Train Loss, Validation Loss) and SSIM
metric (%) across epochs.

validation data sets, together with the SSIM scores on the validation set during the training pro-
cess. As depicted, there is a steep decline in both training and validation loss within the first few
epochs, indicating rapid model adaptation to the dataset structure. In later stages, the loss values
stabilize at a low level (below 0.003). Figure 5 presents an example of image reconstruction

Fig. 5. Reconstruction example. From left: distorted input image, model output, reference image.

for a water meter. The input image exhibits severe distortion in the form of black lines. After
processing with the U-Net model, the reconstructed image recovers much of the original visual
structure with readable digits. However, some residual artifacts remain where distortions were
previously present, particularly in the case of wide or continuous lines. These observations sug-
gest that the model is more effective in reconstructing images affected by fragmented or narrow
lines, while thick, uninterrupted lines, especially those that overlap multiple digits, may locally
obscure the structure, making full recovery more difficult.

6. Conclusion and future work
This paper presents an approach for reconstructing images distorted during transmission using
a convolutional neural network. Experimental results confirmed the model’s effectiveness in
removing artifacts such as lines and missing fragments while preserving structural features of
the original image. High SSIM scores and low MSE values demonstrate the suitability of the
method for low-bandwidth transmission scenarios, such as LoRa-based systems. To evaluate
reconstruction quality, SSIM and MSE metrics were used, as shown in Table 2. The best results
were achieved with a scaling factor of ×1.0, indicating a balance between network complexity
and reconstruction quality. Smaller models led to underfitting, while larger ones caused over-
fitting. An SSIM of 95.9% and MSE of 14.2% confirm high reconstruction accuracy despite
packet loss. However, the method remains vulnerable in cases where transmission artifacts af-
fect critical parts of digits, particularly when key features are occluded, such as loops in 8 and
9 or vertical strokes in 1 and 7. Even minor damage to these regions can hinder the correct
interpretation of the image.
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