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Abstract

Injuries pose a significant challenge in professional football, affecting player availability,
team performance, and club finances. Accurate prediction of injury risk is crucial for
implementing effective prevention strategies. This study develops a deep learning model
to predict the likelihood of injury in professional football players using data collected
through Catapult Sports tracking devices. The research is carried out in collaboration
with KKS Lech Poznan, a Polish football club. The proposed model architecture com-
bines bidirectional long- and short-term memory networks with an attention mechanism
to learn from the time series data and predict player injury risk. The model is trained
on sequences of data spanning 14 days before each recorded injury or non-injury event.
To address class imbalance, a custom loss function was implemented that balances focal
loss and the Fg score. The model’s performance is evaluated on an independent test
set, achieving a specificity of 0.90, an accuracy of 0.90, and a recall of 0.40.
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1. Introduction

In recent years, data analysis and machine learning have become deeply embedded across
a broad spectrum of industries, including professional sports. The conversation has
shifted from whether artificial intelligence (AI) should be adopted to how extensively
it can be applied to solve complex, multifaceted problems. In the domain of profes-
sional football, clubs increasingly use predictive models to optimize ticket prices [11],
enhance recruitment strategies by identifying high-value players, and utilize advanced
metrics such as expected goals (xG) and expected assists (xA) to evaluate on-field perfor-
mance [4], [13]. Despite these advances, several critical challenges remain underexplored
or insufficiently addressed, chief among them being injury prediction.
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Predicting non-contact injuries in elite football, which typically result from over-
or undertraining, represents a multidimensional problem that extends beyond physio-
logical data alone. Effective predictive models must integrate a variety of dimensions,
including difficult-to-quantify factors such as psychological well-being, mental fatigue,
and contextual stressors [6], [9].

This study proposes a novel, comprehensive injury prediction framework integrating
advanced methods across all stages of the modeling pipeline. The approach begins
with rigorous data preprocessing and feature selection based on LASSO regularization,
ANOVA F-tests, and Random Forest importance measures. Athlete-specific multivariate
time series are then constructed using a sliding window strategy to preserve temporal
dependencies. For classification, a bidirectional long- and short-term memory (BiLSTM)
network is combined with an attention mechanism, utilizing a custom loss function that
combines focal loss and Fj3 score optimization to address the substantial class imbalance.

2. Related Work

Numerous studies have explored injury prediction using various analytical approaches,
ranging from traditional statistical methods to advanced machine learning techniques [2],
[7]. For example, Rossi et al. [9] utilized gradient boosting algorithms to predict injury
risk based on workloads and player-specific variables. Their approach demonstrated that
machine learning methods could effectively capture non-linear relationships between
training loads and injury occurrence. Ruddy et al. [6] demonstrated how combining
workload data with players’ physical responses improves predictive accuracy, highlight-
ing the importance of individualized models.

Recent advancements also emphasize the role of wearable sensor technology for injury
prevention. Carey et al. [2] explored the use of GPS and accelerometer-based metrics to
assess injury risks among elite athletes. Their work demonstrated that high-frequency
data collection could reveal patterns that are invisible to traditional monitoring methods.
Similarly, Lépez-Valenciano et al. [7] systematically reviewed the effectiveness of machine
learning algorithms, confirming their superior performance over conventional statistical
methods for injury forecasting in football [§], [I0].

Despite these promising approaches, injury prediction remains a complex analytical
and practical challenge, primarily due to the intricate interplay of physiological, envi-
ronmental, and behavioral factors involved. Most existing approaches focus on tabular
data analysis without considering the temporal nature of athlete monitoring data, which
may contain crucial sequential patterns predictive of injury events.

3. Dataset Description

The dataset employed in this study comprises real-world measurements obtained through
collaboration with KKS Lech Poznan, a professional football club. Data collection en-
compasses a wide range of on-pitch activities, including daily training sessions, preseason
preparations, friendly matches, domestic league matches, and international competi-
tions. Measurements include all athletes assigned to both the first and second teams,
thus covering players across all positions.

Player data is recorded using Catapult wearable GPS trackersE] This GPS equipment
was equipped with an accelerometer, gyroscope, and magnetometer (3D), all of which
sampled data at a frequency of 100 Hz. These devices are integrated into specially
designed vests worn underneath a match and training apparel. These devices utilize

Wector S7 4 GHz, Catapult Innovations, Melbourne, Australia, https://www.catapultsports.com/
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GPS technology, accelerometers, and gyroscopes to capture multidimensional movement
data, including velocity, direction, and distance covered.

The raw dataset, retrieved via the Catapult API, comprises 1,738 parameters; how-
ever, not all are explicitly related to football performance. The API delivers a range
of metrics, from fundamental indicators such as total distance, active time, acceleration
counts, and high-speed distance (across multiple thresholds), to advanced and complex
metrics, including Total Player Loadﬂ

Another dataset included in this study consists of medical records manually main-
tained by the club’s medical staff. This dataset documents all player-reported injuries
from the 2019/20 season onward. Each record contains the date of injury, the player’s
identity, and detailed information about the injury, including the affected body part
and the injury mechanism. These records are primarily used to annotate corresponding
entries in the Catapult dataset, indicating whether a player sustained an injury on a
particular day.

4. Methodology

4.1. Data Acquisition and Preprocessing

Predicting non-contact injuries resulting from over- or undertraining presents a highly
complex and non-trivial challenge. Even when employing machine learning or deep
learning techniques, the quality and structure of the input data remain critical to the
performance of predictive models. The dataset used comprises measurements collected
across multiple seasons from all players assigned to the team, totaling 1,738 parameters.

However, variations in team performance and training strategies between seasons,
often influenced by changes in coaching staff or participation in international competi-
tions, can introduce inconsistencies. Moreover, certain players may contribute limited
value to the dataset due to their infrequent involvement, potentially acting as sources
of noise. To mitigate these issues, a series of preprocessing steps was implemented.

Initially, columns with a percentage of missing values exceeding a predefined thresh-
old (set at 60%) were removed, as they are unlikely to provide meaningful information
for the study. This step also facilitated the practical application of the K-Nearest Neigh-
bors (KNN) imputation method, which estimates missing values by identifying the K
nearest instances based on a distance metric computed over the available features.

Following this, the dataset was scanned for NaN values, and any incomplete records
were imputed. Subsequently, in consultation with the Head of the Research and Devel-
opment Department at KKS Lech Poznan, a curated list of players was excluded from
the training dataset. This list comprised individuals with minimal participation due
to long-term injuries or transfers. Furthermore, only athletes appearing in the medical
report, i.e., those who sustained at least one injury, were retained. Goalkeepers were
excluded due to the unique nature of their role and workload.

The remaining data was aggregated by date and player to account for multiple ac-
tivities performed by a player on the same day. The preprocessed dataset was annotated
using the medical report and sorted chronologically by players and date, enabling the
construction of time series for subsequent analysis. After the aforementioned data pro-
cessing, the dataset contains 21,203 rows and 1122 numeric features.

2Calculated by adding up the acceleration in all directions, as captured by a three-axis accelerometer
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Feature Selection

Feature selection is a crucial step in machine learning pipelines, particularly when work-
ing with high-dimensional and imbalanced datasets. In this study, we employed a hybrid
feature selection strategy combining Random Forest importance measures [1], LASSO
regularization [12], and ANOVA F-tests [5].

Random Forests use an ensemble approach to estimate the importance of features
by measuring their contribution to the model’s predictive accuracy. LASSO combines
variable selection and regularisation by penalising the sum of the absolute values of the
model coefficients, effectively reducing some coefficients to zero. ANOVA F-tests evalu-
ate the statistical significance of individual features by analysing the variance between
different classes.

By combining these techniques, we aimed to enhance the robustness and general-
isability of the model. Ultimately, 100 numerical features were selected for the final
dataset based on their high importance in at least two of the three methods.

Creating Sequences

To prepare data for training and evaluation of a BiLSTM neural network, athlete-
monitoring data were systematically segmented into fixed-length sequences that explic-
itly capture temporal dependencies. Specifically, sequences of length L. = 14 days were
generated using a sliding-window approach, where each input sequence is defined as
Xt ={®—p+1,Tt—1+2,--.,2¢}. Each sequence was associated with a binary target vari-
able y;y1, representing injury occurrence on the immediate subsequent day.

To maintain temporal consistency and prevent cross-season data leakage, sequence
generation was confined to specific seasonal intervals. The data were then split into
training and testing sets based on a cut-off date to ensure that evaluation was based
only on future, unseen data, providing a more realistic performance assessment.

4.2. Addressing Class Imbalance

Dataset imbalance is a crucial problem in this research. After dataset preprocessing, for
all 21,203 remaining records, only 136 are labelled as injury, so the final dataset contains
0.64% of the minority class.

Focal Loss

The focal loss function is a significant development in addressing class imbalance issues
in deep learning classification problems. It is defined as follows:

FL(pt) = —at(1 — pr)7 log(p), (1)

where p; represents the model’s estimated probability for the actual class, oy is a bal-
ancing factor, and ~ is the focusing parameter that modulates the rate at which easy
examples are down-weighted. This formulation extends cross-entropy loss by incorpo-
rating a modulating factor (1 — p;)?, which automatically reduces the contribution of
well-classified examples and concentrates the optimization on challenging examples.

Fg Loss
The Fjg loss presents a direct optimization method for the Fjg metric, defined as

precision - recall

Fz=(1+48%-
p=(1+5) (32 - precision) + recall’
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where 3 controls the relative importance between precision and recall. This implementa-
tion directly computes micro-averaged precision and recall from predicted probabilities
and ground truth labels.

Custom Loss Function

Addressing the challenges of highly imbalanced datasets in sequential pattern recogni-
tion, this study presents a parameterized combinatorial loss framework that dynamically
balances Focal and Fjg components:

Ecustom(ytruey ypred) =A Efocal(ytruea ypred> + (1 - /\) EF[; (ytrue7 ypred)7 (3)

where A € [0, 1] controls the balance between focal loss and Fp loss. In this work, a,
v, B, and A parameters are tuned automatically using the Optuna optimization frame-
work. This dual-component architecture eliminates the need for explicit data resampling
techniques and offers flexibility through hyperparameter optimization.

4.3. Baseline Model with XGBoost

To evaluate the effectiveness of sequential modeling for injury prediction, we developed
a baseline approach using XGBoost [3]. The baseline model was trained on the same
dataset and feature set as the sequential model, but treated the data as independent daily
records rather than temporal sequences. Hyperparameter optimization was conducted
using the Optuna framework with 100 trials (Table .

Table 1. Best hyperparameters selected by Optuna for XGBoost model.

Hyperparameter Value
Max depth 4
Learning rate 0.0105
Number of estimators 500
Gamma, 0.754
Min child weight 6
Subsample 0.794
Colsample by tree 0.714

Scale positive weight 200

4.4. Model Architecture

The injury prediction architecture is based on a deep BiLSTM network (see Table
enhanced with attention mechanisms and sophisticated pooling techniques. BiLSTM
networks effectively capture long-term dependencies in sequential data by processing
inputs in both the forward and backward temporal directions. This is essential for
modelling the complex dynamics of player workload over time.

Incorporating an attention layer enables the model to focus on the most relevant
temporal patterns, thereby reducing the risk of overfitting irrelevant or repetitive se-
quences. Feature extraction is further improved through the use of both global average
pooling and max pooling operations. Additionally, dense layers with L2 regularisation
and dropout are employed to guard against overfitting further. The optimal parameters
selected by Optuna are detailed in Table
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Table 2. Summary of the BiLSTM- Table 3. Best hyperparameters se-
Attention model architecture. lected by Optuna for the BiLSTM-
Attention model.
Layer (Type) Output Shape Param #
InputLayer (None, 14, 102) Hyperparameter Value
Bidirectional (None, 14, 256) 236,544 LSTM units (Layer 1) 128
Dropout (None, 14, 256) LSTM units (Layer 2) 32
Bidirectional (None, 14, 64) 73,984 Dropout rate (Layer 1)  0.20
Dropout (None, 14, 64) Dropout rate (Layer 2)  0.30
Attention (None, 14, 64) Final dropout rate 0.40
GlobalAvgPoollD  (None, 64) Dense units (Layer 1) 64
GlobalMaxPoollD  (None, 64) Dense units (Layer 2) 32
Concatenate (None, 192) L2 regularization factor  0.00663
Dense (None, 64) 12,352 Learning rate 0.00017
BatchNorm (None, 64) 256 Focal loss: « 0.25
Dropout (None, 64) Focal loss: 9.0
Dense (None, 32) 2,080 Loss combination: A 0.7
BatchNorm (None, 32) 128 Fs: B 2
Dropout (None, 32) Positive class weight 20.0
Dense (None, 1) 33 Batch size 128
Total 325,377

FEvaluation with Sliding Window

To account for temporal uncertainty in injury prediction, model evaluation was per-
formed using a sliding window tolerance approach. Let ¢, denote the date of a predicted
injury and t, the date of an actual injury. A prediction is classified as a true positive
if it occurs within a tolerance window of 4+d days around the actual injury date, where
d = 5. This evaluation strategy reflects the clinical relevance of near-miss predictions,
providing a more robust assessment of model performance.

4.5. Ablation Study: Impact of Loss Function Design

To assess the influence of different loss functions on model performance, we conducted
an ablation study comparing binary cross-entropy, focal loss, and the proposed custom
combination loss. As shown in Fig.[l] the custom loss function led to the most balanced
performance across all evaluation metrics.

While binary cross-entropy yielded the highest accuracy (0.9448), it entirely failed to
detect injury cases, resulting in a recall and F1-score of 0.0. This confirms that standard
loss functions are inadequate in scenarios with extreme class imbalance. Focal loss
improved recall substantially to 0.50 and yielded the highest AUC (0.6667), confirming
its ability to down-weight easily classified majority-class examples.

The custom combination loss demonstrated a more favorable balance between sensi-
tivity and overall classification performance. It achieved a recall of 0.40 and the highest
Fl-score (0.0229), while maintaining a high AUC (0.6563) and significantly better ac-
curacy (0.9049) than focal loss.

5. Results and Discussion

The evaluation of the proposed injury prediction model using a £5-day tolerance window
demonstrates promising results particularly given the extreme imbalance and inherent
uncertainty of the dataset. The model achieved a specificity of 0.90 and an overall
accuracy of 0.90, underscoring its ability to identify non-injury cases while maintaining
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Fig. 1. Comparison of loss functions on test set performance.

robust generalization correctly. Despite the considerable challenge of predicting rare
injury events, the model attained a recall of 0.40, successfully detecting 40% of injuries
within the defined temporal window.

Timing analysis revealed that true positive predictions occurred, on average, within
4.25 days after the injury event, demonstrating strong alignment with clinically relevant
timeframes. Notably, no predictions happened before the actual injury dates, indicating
a conservative and stable model behavior.

Compared to the sequential BILSTM-Attention model, the XGBoost baseline achieved
noticeably lower predictive performance, as summarized in Table [4]

Table 4. Comparison of BiLSTM-Attention and XGBoost models on injury prediction
task. Evaluation performed using a £5-day tolerance window.

Metric BiLSTM-Attention XGBoost Baseline
Precision (Injury) 0.02 0.02
Recall (Injury) 0.40 0.17
Accuracy 0.90 0.80
Specificity (Non-Injury) 0.90 0.83

Experiments incorporating more sophisticated architectural components, such as
multi-head attention mechanisms, resulted in a significant increase in false positive rates,
suggesting that excessive model complexity may lead to overfitting to noisy sequential
patterns in highly imbalanced datasets. This observation highlights a fundamental chal-
lenge: the onset of injury may be too complex to predict reliably using simple daily
aggregation windows.

Future studies may benefit from incorporating more granular temporal features, such
as cumulative workload metrics or player-specific fatigue models, to enhance predictive
precision. Further research should explore the application of alternative machine learn-
ing approaches, including ensemble methods or transformer-based architectures specifi-
cally adapted for sparse event detection.
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