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Abstract

This study explores the application of artificial intelligence (AI) methods for the automated
detection and classification of laryngeal pathologies in fiberoptic laryngoscopy videos. From
recordings of 292 patients, a total of 885 informative image frames were automatically ex-
tracted, and subsequently segmented manually by experienced clinicians. Seven distinct pathol-
ogy categories were examined using two deep learning models, Mask R-CNN, designed for
classification, object detection, and segmentation tasks; and EfficientNet V2L, solely for clas-
sification. For the classification task, an across-class average imbalance-resistant F1-score was
higher for Mask R-CNN model, 0.95 (confidence interval, CI: 0.90–0.98), than for Efficient-
Net V2L 0.74 (CI: 0.66-0.81; McNemar’s test p<0.001). In object detection, a mean average
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precision of 0.36 (CI: 0.35-0.37) was achieved at an intersection over union threshold of 50%.
However, segmentation models reached lower performance, average precision 0.29 (0.28-0.30).
In sum, for the larynx pathology analysis, DNNs show more potential for classification than
segmentation tasks, with an advantage of Mask R-CNN over EfficientNet architecture.

Keywords: deep neural networks, laryngology, pathology classification, medical image seg-
mentation, endoscopic imaging

1. Introduction
Laryngeal pathologies such as tumors, polyps, or cysts can contribute to the worsening of the
patient’s condition, including the disruption of phonation function of the larynx [9]. Early diag-
nosis of these lesions improves clinical outcomes through timely intervention [5].

As one of the means of evaluating the pathologies, an endoscopic camera introduced through
the nasal cavity of the patient is used to assess the larynx, and the vocal folds in particular [1],
[4]. During the examination, the physician may ask the patient to say a certain vowel, for a
more accurate diagnosis. In addition, the physician can adjust the parameters of the endoscopic
camera, e.g., by changing the range of light the camera is displaying/recording. Two of the most
commonly used spectra of light are white light (WL), and narrow-band imaging (NBI).

The current study aims to evaluate the potential of artificial intelligence (AI) in enhancing
medical diagnostics in laryngology [13]. Utilizing deep neural networks (DNNs) during the
endoscopic evaluation of the respiratory tract can significantly accelerate patient diagnosis pro-
cesses [12]. Here, we evaluated the performance of two widely used architectures—EfficientNet
V2L and Mask R-CNN for full-image classification, as well as for object detection and segmen-
tation (Mark R-CNN only). Our aim was to determine whether current DNN solutions can
support and/or automate assessment of the pathologies while identifying current limitations of
DNN technology in this regard.

2. MATERIALS AND METHODS

2.1. Dataset

Data were collected from 292 patient cases at the Poznan University of Medical Sciences
(PUMS) and anonymized, yielding 885 high-quality expert-annotated laryngeal endoscopic
frames. Segmentation was performed by experienced otolaryngologists using Label Studio [3],
based on 7 pathology classes: squamous cell carcinoma (SCC) – 207 samples, cyst – 61 sam-
ples, dysplasia/carcinoma in situ (DCS) – 69 sample, keratosis without atypia – 36 samples,
recurrent respiratory papillomatosis (RRP) – 675 samples, polyp – 67 samples, and Reinke’s
edema – 21 samples. The images were either from white light (WL) setting, or narrow-band
imaging (NBI) spectrum.

2.2. Model development

The balanced ratio for all training and validation dataset was 80% to 20%, meaning, e.g., that for
squamous cell carcinoma there were 207 samples in the training dataset, and 44 in the validation
dataset, etc. The models were trained on the 80% of the available dataset, and then tested on a
20% validation subset.

Two architectures of DNNs were used to perform the research, Mask R-CNN implemented
on the Detectron2 platform with PyTorch (X_101_32x8d_FPN_3x) [2], [16], and EfficientNet
V2L architecture [8], [11], [14] implemented with the Keras framework and TensorFlow.
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2.3. Preprocessing and Data Augmentation

Underexposed, smeared, overexposed and reflection frames were removed, according to the
methodology described elsewhere [4], and only informative frames were retained.

For datasets trained on the Mask R-CNN model running on the Detectron2 framework,
no data augmentation was applied. For datasets used in the TensorFlow framework for the
EfficientNet V2L model, images were transformed with normalization, random rotation with a
maximum of 20 degrees, approximation with a maximum degree of 0.2, and random horizontal
flipping.

2.4. Training Parameters

Training parameters for the Mask R-CNN model used in the study were the following: batch
size=2, Learning Rate=0.0125, number of epochs=30, number of classes=7, Backbone freeze at
2. Parameters for the EfficientNet V2L model were: batch size=[8,16,32], learning rate=[0.00001,
0.00002, 0.00005], number of epochs=1860, dropout rate=[0.1, 0.2, 0.3, 0.4, 0.5], and L2=[0.001,
0.002, 0.005]. This include the initial set of parameters, and the best set selected with Keras-
Tuner [8] (with bolded font), which was used for the final training. The number of epochs was
selected based on previous experience of the research team and could potentially be increased
in further studies.

2.5. Model evaluation

To evaluate the performance of the trained models, the following metrics were used: (1) for clas-
sification: precision, recall, F1 score; (2) for object detection and lesion segmentation: average
precision (AP), average recall (AR), and intersection under union (IoU) [10]. For AP and AR,
IoU was set to IoU ≥ 0.5 with a cap of 0.05 to IoU ≤ 0.95, which means that for a detection to
be considered correct, the common part of the object detected by the model and the real object
is a minimum of 50% of the total detection area and the real object together, and so the common
part for each IoU threshold is summed and then divided by the number of thresholds, making
them bet the average AP [15]. The difference in the performance of the two analyzed models
was evaluated with the McNemar’s test.

3. Model Results

3.1. Classification results of Mask R-CNN model X_101_32x8d_FPN_3x vs EfficientNet
V2L

For the classification task, an cross-class average imbalance-resistant F1-score for Mask R-CNN
model was 0.95 (confidence interval, CI: 0.90–0.98). The complete results for the Mask R-CNN
model are presented in the left panel of the Table 1, by class and across all classes (averaged).

The class-averaged F1-score for the EfficientNet V2L was 0.74 (CI: 0.66-0.81). Table 1,
right panel, shows all the results for the EfficientNet V2L model.

The analyzed models differed in terms of performance (χ2 = 26.7, p<0.001).

3.2. Mask R-CNN model object detection results X_101_32x8d_FPN_3x

In object detection, a mean average precision of 0.36 (CI: 0.35-0.37) was achieved for an inter-
section over union threshold of 50%.
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Table 1. Comparison of classification results for Mask R-CNN and EfficientNet V2L on the laryn-
geal pathology dataset. Metrics shown: precision, recall, and F1-score with 95% confidence
intervals.

Class Mask R-CNN EfficientNet V2L
Precision Recall F1-score Precision Recall F1-score

Cyst 1.00 (1.00–1.00) 0.91 (0.70–1.00) 0.95 (0.82–1.00) 0.86 (0.50–1.00) 0.46 (0.20–0.75) 0.60 (0.31–0.80)
Dysplasia/carcinoma in situ 1.00 (1.00–1.00) 0.75 (0.50–1.00) 0.86 (0.67–1.00) 1.00 (1.00–1.00) 0.46 (0.20–0.77) 0.63 (0.33–0.87)
Keratosis without atypia 1.00 (1.00–1.00) 0.67 (0.25–1.00) 0.80 (0.40–1.00) 0.67 (0.00–1.00) 0.33 (0.00–0.80) 0.44 (0.00–0.80)
Papillomatosis (RRP) 0.95 (0.88–0.99) 1.00 (1.00–1.00) 0.97 (0.94–0.99) 0.77 (0.67–0.86) 0.89 (0.81–0.96) 0.83 (0.75–0.89)
Polyp 1.00 (1.00–1.00) 0.92 (0.71–1.00) 0.96 (0.83–1.00) 0.59 (0.40–0.80) 0.93 (0.77–1.00) 0.72 (0.55–0.88)
Reinke’s edema 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (0.00–1.00) 0.67 (0.00–1.00) 0.80 (0.00–1.00)
Squamous cell carcinoma 0.92 (0.83–1.00) 0.98 (0.93–1.00) 0.95 (0.89–0.99) 0.72 (0.59–0.85) 0.69 (0.56–0.81) 0.71 (0.60–0.80)
Macro avg 0.98 (0.96–0.99) 0.89 (0.80–0.96) 0.93 (0.85–0.97) 0.80 (0.61–0.88) 0.63 (0.51–0.75) 0.68 (0.52–0.77)
Weighted avg 0.95 (0.92–0.98) 0.95 (0.91–0.98) 0.95 (0.90–0.98) 0.77 (0.71–0.83) 0.75 (0.68–0.82) 0.74 (0.66–0.81)

Unbalanced accuracy results across all classes (i.e., all correctly classified samples over all samples) were the following: for

Mask R-CNN: 0.95 (0.91–0.98); for EfficientNet V2L: 0.75 (0.68–0.82). In parentheses, 95% confidence intervals are reported.

Abbreviations: DCS – dysplasia/carcinoma in situ, RRP – papillomatosis, SCC – squamous cell carcinoma.

3.3. Mask R-CNN model segmentation results X_101_32x8d_FPN_3x

The Mask R-CNN achieved a mean average precision (mAP@[0.50:0.95]) of 0.29 (CI: 0.28-
0.30) and an average recall of 0.36 (CI: 0.29-0.43).

4. Conclusion
In this study we demonstrated the capabilities and compared two deep neural networks architec-
tures for the automatic detection and classification of laryngeal pathologies in a real-life medical
dataset.

The classification task was the easiest for DNN, as compared to object detection and seg-
mentation. Mask R-CNN proved better than EfficientNet V2L in this task, suggesting that the
use of faster R-CNN as the classification backbone within the Mask R-CNN architecture may
offer better suitability or performance for medical image classification tasks. In a similar work
where EfficientNetV2L-LGBM model was used for classification, validation accuracy of 0.97
was obtained, compared to 0.75 in our study, indicating overfitting in the first case [6].

The classification of objects from bounding box areas yielded moderate object detection
performance, indicating that while the model can assist in lesion pre-identification, careful clin-
ician verification remains essential to ensure diagnostic accuracy [13]. The segmentation results
indicate even more limited model capabilities, as for most pathology categories the results were
unsatisfactory [9].

The presented results have undergone rigorous verification, also in cooperation with medical
experts. Of the analyzed use-cases, classification, especially with Masked R-CNN yielded the
most promising results, in terms of potential future applications such as diagnosis support or
treatment monitoring [7].
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