33RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2025 BELGRADE, SERBIA)

Certamen Artificialis Intelligentia: Evaluating AI in Solving
Al-generated Programming Exercises

Carmine Coppola, Simone Perrotta, Ciro Giuseppe De Vita, Gennaro Mellone,
Diana Di Luccio, and Raffaele Montella
University of Naples “Parthenope”
{carmine.coppola001,simone.perrotta00l,
Naples, Italy gennaro.mell.one'] j@ student‘i. uniparthe.nope'. it
{cirogiuseppe.devita,diana.diluccio,

raffaele.montella} @uniparthenope.it

José Carlos Paiva and Ricardo Queiros
Polytechnic of Porto
Porto, Portugal josepaiva@sc.ipp.pt, ricardoqueiros @ esmad.ipp.pt

Robertas Damasevicius and Rytis Maskeliunas
Kaunas University of Technology

Kaunas, Lithuania {robertas.damasevicius,rytis.maskeliunas} @ktu.lt

Jakub Swacha

University of Szczecin

Szczecin, Poland Jjakub.swacha@usz.edu.pl
Abstract

Large language models (LLMs) are transforming programming education by enabling auto-
mated generation and evaluation of coding exercises. While previous studies have evaluated
LLMSs’ capabilities in one of these tasks, none have explored their effectiveness in solving pro-
gramming exercises generated by other LLMs. This paper fills that gap by examining how state-
of-the-art LLMs—ChatGPT, DeepSeek, Qwen, and Gemini—perform when solving exercises
generated by different LLMs. Our study introduces a novel evaluation methodology featuring a
structured prompt engineering strategy for generating and executing programming exercises in
three widely used programming languages: Python, Java, and JavaScript. The results have both
practical and theoretical value. Practically, they help identify which models are more effective
at generating and solving exercises produced by LLMs. Theoretically, the study contributes to
understanding the role of LLMs as collaborators in creating educational programming content.
Keywords: Large Language Models, Gamified Programming Exercises, Al-driven Assessment,
Automated Code Evaluation.

1. Introduction

Large Language Models (LLMs) are increasingly integrated into programming education, offer-
ing benefits such as personalization, scalability, and accessibility [1], [7], [9]. These mod-
els, trained on vast text and code corpora, can generate exercises aligned with pedagogical
goals [4, 5] and solve them [2], making them useful in both instruction and assessment.
However, challenges remain. Training biases [11] and output stochasticity [6] can affect
exercise quality and consistency. Despite this, their adoption in education continues to expand.
While prior benchmarks have examined LLMs either as generators [2] or solvers [3], no
study has assessed their performance across both roles in a unified setting. This paper addresses

COPPOLA ET AL. CERTAMEN ARTIFICIALIS INTELLIGENTIA. . .

that gap by evaluating four widely used LLMs—ChatGPT, DeepSeek, Qwen, and Gemini—in
generating and solving programming exercises produced by their peers.

2. Experimental Procedure

2.1. Exercise Generation

Exercises were generated using a structured prompt engineering approach to ensure consistency
and pedagogical soundness. Each LLM was prompted to create tasks of varying difficulty based
on a predefined prompt. The resulting outputs were verified for correctness and format before
being used in the experiment.

The exercise generation process employed the following API versions to ensure experimen-
tal consistency: GPT-4 (OpenAl), DeepSeek-R1, Qwen-Turbo, and Gemini 2.0 Flash.

Figure 1 presents the prompt used to generate programming exercises for the experiment.

Fig. 1. Generator prompt

2.2. Exercise Solving

The Executor prompt was designed as to ensure not only that the LLM will generate a solution
in the form of a source code in the indicated programming language but also that its output will
adhere to the specified format requirements so that the evaluation process could be streamlined.
Figure 2 presents the prompt used to solve programming exercises in the experiment.

Fig. 2. Executor prompt

2.3. Experimental Setup and Metrics

The experiment was run locally to avoid cloud-related inconsistencies. Each LLM acted as both
generator and solver in four rotations, generating 20 exercises per round. All models, including

ISD2025 BELGRADE, SERBIA

the generator, attempted to solve each set of tasks in Python, JavaScript, and Java, ensuring
language diversity and cross-evaluation.
We used three metrics to evaluate performance:

e Erry = %: the proportion of solutions with syntax errors (e.g., uncompilable or

improperly formatted code);

Niogi
» Err = % the proportion of syntactically correct solutions that produce incorrect
outputs; these may be due to the executor generating an implementation that does not
fulfill the task requirements, or the generator providing an imprecise task definition;

e TE = M -100%: the total error rate, combining both syntax and logic errors.

3. Results

We report the results of our cross-evaluation experiment, in which each LLM attempted to solve
exercises generated by itself and the other LLMs.

Table 1 reports the syntax error rates Errg across generator—executor combinations. Rows
represent generators; columns, executors. The Mean for Generators column reflects how easily
exercises from each model are solved. The Mean for Executors row shows which models better
solve others’ tasks. Lower values in both indicate stronger performance.

gﬁfﬁgz ChatGPT | DeepSeek | Qwen | Gemini Gl\;[ﬁz:aiz;s
ChatGPT 0.043 0.044 0.061 0.045 0.048
DeepSeek 0.056 0.053 0.072 | 0.061 0.061
Qwen 0.072 0.067 0.068 | 0.056 0.066
Gemini 0.056 0.061 0.065 0.070 0.063
Mean for Executors 0.057 0.056 0.066 | 0.058 Errg

Table 1. Comparing Err,

Key findings of Table 1: ChatGPT emerges as the generator with the lowest average syntax
error (4.8%), while Qwen shows the highest (6.6%). As executors, ChatGPT, DeepSeek, and
Gemini perform similarly (around 5.7%), whereas Qwen is the least reliable, again with 6.6%.

Table 2 presents the results regarding the rate of logical errors Err; in the generated solutions.

E’éi‘i‘zz ChatGPT | DeepSeek | Qwen | Gemini Glfl‘::;‘afz;
ChatGPT 0.005 0.012 0.013 | 0.011 0.010
DeepSeek 0.006 0.011 0.028 | 0.006 0.012
Qwen 0.017 0.017 0.016 | 0.011 0.015
Gemini 0.017 0.022 0.033 | 0.019 0.023
Mean for Executors 0.011 0.015 0.023 0.012 Err

Table 2. Comparing Err;

COPPOLA ET AL. CERTAMEN ARTIFICIALIS INTELLIGENTIA. ..

Key findings of Table 2: ChatGPT also proves to be the most reliable generator in terms of
logic, with a mean logical error rate of 1.0%, followed by DeepSeek (1.2%), while Gemini
reaches the highest (2.3%). As executors, ChatGPT (1.1%) and Gemini (1.2%) perform best,
while Qwen again records the worst result (2.3%).

Table 3 presents the total error rates T'E observed across all generator—executor combinations.

gtf;‘;:;:;r_i ChatGPT | DeepSeek | Qwen | Gemini Gl\;[s::af(:;s
ChatGPT 4.8 5.6 7.4 5.6 5.9
DeepSeek 6.1 6.4 10.0 6.7 7.3
Qwen 8.9 8.3 8.3 6.7 8.0
Gemini 7.2 8.3 9.8 8.9 8.6
Mean for Executors 6.8 7.2 8.9 7.0 TE(%)

Table 3. Comparing the overall total error index (TE).

Key findings of Table 3:Considering the total error index (TE), ChatGPT confirms its lead-
ing role as both generator (5.9%) and executor (6.8%). Gemini results in the least reliable
generator (8.6%) and Qwen the least effective executor (8.9%).

Although all error rates stayed below 10%, their analysis highlights performance variability and
helps assess each model’s suitability as both generator and solver in educational contexts.

4. Discussion

Recent studies [2, 3], [8], [10] show that LLMs perform well on well-defined programming
tasks, but struggle with ambiguous, creative, or complex challenges, and often produce code
with syntax or logical errors. Prompt quality plays a key role in performance. Among these
studies, ChatGPT was the most effective solver, correctly addressing about 60% of tasks [3].

We tested four LLMs, each generating 20 exercises and attempting to solve exercises gener-
ated by others, including their own.

We assessed generation quality based on the average solver error rate per generator. Chat-
GPT proved the most effective (5.9%), while Gemini yielded the highest error rate (8.6%).

5. Conclusion

Our results confirm that LLMs can both generate and solve programming exercises across mul-
tiple programming languages, with ChatGPT notably outperforming the other LLMs.

While our approach is novel in considering the double role of LLMs , it has some limitations
and does not explore all research opportunities it opens. Its main limitation is the absence of
human evaluation, which could expose generated exercises that may be ambiguous or awkward
despite being solvable by Al. Moreover, the study does not include a systematic analysis of
potential biases, such as consistent differences in difficulty or implicit preference for specific
programming paradigms. These will be addressed in future work.

Acknowledgements

This research was co-funded by the European Union, grant 2023-1-PL0O1-KA220-HED-000164696.
The authors would like to thank Francesco Peluso from University of Naples "Parthenope” for
his involvement in the reported research.

ISD2025 BELGRADE, SERBIA

References

[1] Cain, W.: Prompting change: exploring prompt engineering in large language model ai
and its potential to transform education. TechTrends 68(1), pp. 47-57 (2024)

[2] Hou, W., Ji, Z.: Comparing large language models and human programmers for generating
programming code. Advanced Science 12(8), pp. 2412279 (2024)

[3] Huang, Y., Lin, Z., Liu, X., Gong, Y., Lu, S., Lei, F,, Liang, Y., Shen, Y., Lin, C,,
Duan, N., Chen, W.: Competition-level problems are effective llm evaluators (2024),
https://arxiv.org/abs/2312.02143

[4] Joel, S., Wu, JJ., Fard, FH.: A survey on Illm-based code genera-
tion for low-resource and domain-specific programming languages (2024),
https://arxiv.org/abs/2410.03981

[5] Montella, R., De Vita, C.G., Mellone, G., Ciricillo, T., Caramiello, D., Di Luccio, D.,
Kosta, S., Damasevicius, R., Maskelitinas, R., Queiros, R., Swacha, J.: Leveraging Large
Language Models to Support Authoring Gamified Programming Exercises. Applied Sci-
ences 14(18), pp. 1-15 (2024)

[6] Ouyang, S., Zhang, J.M., Harman, M., Wang, M.: Llm is like a box of chocolates: the
non-determinism of chatgpt in code generation. arXiv:2308.02828 (2023)

[7] Stamper, J., Xiao, R., Hou, X.: Enhancing LLM-based feedback: Insights from intelli-
gent tutoring systems and the learning sciences. In: International Conference on Artificial
Intelligence in Education. pp. 32—43. Springer (2024)

[8] Svetkin, A Testing IIms on solving leetcode problems.
https://hackernoon.com/testing-llms-on-solving-leetcode-problems
(2024), accessed on Feb 18, 2025

[9] Tapalova, O., Zhiyenbayeva, N.: Artificial intelligence in education: Aied for personalised
learning pathways. Electronic Journal of e-Learning 20(5), pp. 639-653 (2022)

[10] Walker, S.M.: Bigcodebench: A new benchmark for evaluating LLMs on programming
tasks. https://klu.ai/glossary/bigcodebench-eval (2024), accessed on
Feb 18, 2025

[11] Warr, M., Oster, N.J., Isaac, R.: Implicit bias in large language models: Experimental
proof and implications for education. Journal of Research on Technology in Education pp.
1-24 (2024)

