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Warsaw University of Technology/Faculty of Mathematics and Information Science
Warsaw, Poland tymoteusz.kwiecinski.stud@pw.edu.pl

Wiktoria Mieleszczenko-Kowszewicz
Warsaw University of Technology/Faculty of Mathematics and Information Science
Warsaw, Poland wiktoria.kowszewicz@pw.edu.pl

Przemysław Biecek
Warsaw University of Technology/Faculty of Mathematics and Information Science
Warsaw, Poland przemyslaw.biecek@pw.edu.pl

Abstract

We present a process of transforming medical data into a system that supports radiologists’ in-
terpretation and understanding of Computed Tomography (CT) images. The system is based
on a pipeline that includes image conversion, organ segmentation, feature extraction, and report
rendering. The final report presents organ visualisations and information about organ measure-
ments, with marked outliers, to the radiologist. The system was created using data from the
database containing over 40,000 CT scans and a pre-trained Swin UNETR architecture. The
system obtained 89.09% DICE for five segmented organs. The created solution can go through
the process in less than five and a half minutes, and its usability was confirmed by radiologists.
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1. Introduction
Diagnostic imaging in radiology can be taken as an example of digital transformation, as the
radiologists analyse digital images, such as Computed Tomography (CT) scans and the process
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can be supported by IT solutions, including software using AI solutions. However, many com-
mercial solutions cannot guarantee that the proposed digital innovation is effective, as they lack
peer-reviewed evidence of efficacy [4]. On the other hand, some solutions that came through the
scientific review process, i.e. [5],[10], are distributed as libraries, without an efficient workflow.

To fill this gap, we propose a streamlined pipeline that replaces the manual tasks of taking
the measurements of organs on CT scans with AI and transfers DICOM data into a readable
report, improving the user’s experience.

Because the proposed solution is based on a massive database of 40 thousand CT scans, it
was possible to calculate reference values and use to highlight outlier values in the final report.
Thanks to size of the dataset it was more feasible to create robust references than using smaller
data sets. i.e. [5],[7]. Performed tests answered the research questions, whether the proposed
automation will perform high-quality organ segmentation in a reasonable time and improve the
radiologists’ experience of working with digital data.

2. State of the art
The commercial market of AI software in radiology was summarised in [4]. The authors anal-
ysed 100 CE-marked AI products from 54 different vendors. However, 64% of products had no
peer-reviewed evidence of their efficacy, and only 18% AI products have demonstrated clinical
impact. Therefore, the authors concluded that the sector is still in its infancy.

Several applications of deep learning for organ segmentation already exist. The architecture
of the applied network is similar, and the solutions differ according to the used learning dataset.
Using a dataset of 140 CT scans, a deep neural network was trained, which requires only 4.3
s to simultaneously segment six organs [5]. The same dataset was used to create an improved
U-Net-based solution, obtaining the average DICE of 80.46% [7].

In work [6], a Res-UNET model was trained and tested on a dataset of 3106 CT images
to generate segmentation masks of 15 common organs. The obtained average DICE coefficient
before and after post-processing was at the level of 84.28% and 83.26%, respectively, with an
inference time of 1.67 seconds per case per organ for a total-body CT image. A lightweight
medical image segmentation network named LCOV-Net was proposed in [10]. Experiments on
two public CT datasets for multiple organ segmentation showed that LCOV-Net obtained an
average DICE of up to 85.91%. Work presented in [8] used pediatric CT examinations, which
differ from adult data sets. Using 1731 CT examinations and various architectures (SegResNet,
DynUNet, and SwinUNETR), the obtained DICE reached 95% on the three examined organs.

3. Methodology

3.1. Data

The largest and most diverse source of lung data used in the project was the Polish Lung Cancer
Group (PLCG) database1. The database consists of 40,000 CT scans of people participating
in a nationwide lung cancer screening trial between 2010 and 2018. It makes the data set more
extensive than the biggest public CT data set - The National Lung Screening Trial (NLST).

The data copying process took four months. An average of 450 discs per hour were copied,
which was made possible by using a system consisting of two laptops with twenty DVD readers
connected and four external drives with a total capacity of more than 10 TB.

To aid the interpretation of radiomic organ parametrisations by end users of our solution,
observations from the PLCG database were used to create reference value distributions. In
order to do so first, we processed CT images from the entire database using the presented data
processing pipeline. Next, for each organ and each radiomic feature, we computed a set of

1https://www.polgrp.org.pl

https://www.polgrp.org.pl
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Fig. 1. Schema of the system with task processing components

percentiles. These percentile tables enable end users to quickly assess whether all radiomic
feature values for a given organ fall within the typical range or to identify any outlying values.
Our references may be replaced with data from any other dataset. However, we recommend a
minimum size of 1,000 records.

3.2. System

As presented in Fig. 1, the computation server consists of four types of horizontally scalable
workers, communicating with different RabbitMQ queues. The user interface presented in
Fig. 2a was implemented using React. Further communication with the server is performed
using API calls. The web backend sends a message to the first queue. Workers sequentially
process the data, and the task is moved to the next queue when finished.

The image conversion converts data from DICOM format to NIfTI (Neuroimaging Informat-
ics Technology Initiative), which is necessary to prepare numerical data for organ segmentation.

The GPU-accelerated segmentation model is based on a pre-trained Swin UNETR architec-
ture [2]. It is an improved version of the TotalSegmentator model [9] that is based on the older
nnUNet [3] architecture and can segment over one hundred anatomical structures in CT images.
More information about the created model can be found in [1].

The radiomic feature extraction is performed using the PyRadiomics library. The utilisation
of the CPU by this worker is the highest in the whole pipeline. The most resource-consuming
part of the extraction is the computation of spatial shape, which is the base for the feature
calculation. The selection of radiomic metrics for further presentation was consulted with ra-
diologists and includes: Mesh volume, Voxel Volume, Surface area, Surface Area to Volume
ratio, Maximum 3D diameter, Maximum 2D diameter (Slice), Maximum 2D diameter (Col-
umn), Maximum 2D diameter (Row), and Major Axis Length.

The features are compared with the reference values, computed outside the main pipeline,
and updated only if the reference dataset has been extended or modified. After feature values
are compared with references to detect outliers, an automated LaTeX-based reporting service
assembles interactive dashboards and PDF summaries. To create the PDF file, the report render
uses Jinja to fill out the template and compile the file using Latexmk. Fig. 2b presents the final
report, with the outliers marked in yellow.
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(a) Web application

Radiomicreport
Patient name: Unknown
Patient birth date: Unknown
Patient sex: Unknown
User id: 68719

Right lung

Segment Value Unit Per.
Voxel vol 3947.7 ml 91
Surface area 2234.5 cm2 88
Surf. to Vol 0.1 1/mm 10
Max 3D 337.0 mm 70
Max 2D Axial 216.7 mm 64
Max 2D Coronal 335.7 mm 84
Max 2D Sagittal 304.2 mm 76
Major Ax Len 277.9 mm 96↑

Aorta

Segment Value Unit Per.
Voxel vol 224.6 ml 47
Surface area 433.5 cm2 42
Surf. to Vol 0.2 1/mm 45
Max 3D 267.0 mm 47
Max 2D Axial 107.7 mm 22
Max 2D Coronal 263.0 mm 58
Max 2D Sagittal 263.1 mm 59
Major Ax Len 255.0 mm 43

Trachea

Segment Value Unit Per.
Voxel vol 47.9 ml 83
Surface area 139.4 cm2 80
Surf. to Vol 0.3 1/mm 12
Max 3D 157.9 mm 80
Max 2D Axial 58.2 mm 17
Max 2D Coronal 110.8 mm 70
Max 2D Sagittal 148.2 mm 85
Major Ax Len 175.6 mm 88

Left lung

Segment Value Unit Per.
Voxel vol 3603.3 ml 93
Surface area 2139.5 cm2 88
Surf. to Vol 0.1 1/mm 4↓
Max 3D 338.0 mm 75
Max 2D Axial 207.1 mm 63
Max 2D Coronal 333.9 mm 88
Max 2D Sagittal 298.5 mm 75
Major Ax Len 284.2 mm 94

Pulmonary artery

Segment Value Unit Per.
Voxel vol 50.4 ml 24
Surface area 145.6 cm2 38
Surf. to Vol 0.3 1/mm 87
Max 3D 104.7 mm 31
Max 2D Axial 101.7 mm 27
Max 2D Coronal 98.1 mm 58
Max 2D Sagittal 89.9 mm 82
Major Ax Len 92.2 mm 67

Legend:
Value above or below the norm
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(b) Report with radiomic features

Fig. 2. Example of processing for a single CT scan (DCIM format)

4. Tests
The segmentation results were evaluated using a holdout dataset with masks prepared by the
radiologists. The DICE, a volume of the common part of the mask and prediction to the union
of both elements, was used to evaluate the segmentation quality. The average DICE for all
organs reached 89.09. The best scores were obtained for lungs, 92.80 and 90.34 for left and
right, respectively. Smaller organs like the aorta and trachea obtained results slightly over 89.
The lower results of 84 were obtained for the pulmonary artery.

The obtained result is better than presented in works [7] (U-Net, 80.46%), [6] (Res-UNET,
84.28%), and [10] (LCOV-Net, 85.91%), but smaller than in [8] (SwinUNETR, 95%). However,
the results were obtained from various data sets and various organs. Therefore, the obtained
result can be taken as satisfactory.

The median time for processing a single DICOM was 5 minutes and 24 seconds. The me-
dian time of the segmentation was 55 seconds, which is a longer time than reported in [5] (4.3
seconds to segment six organs) and in [6] (1.67 seconds to segment a single organ). However,
the reconstruction of a three-dimensional organ involves several inferences.

The application was also tested in user study by 15 physicians specialised in radiology. The
average satisfaction with the system was 4.3/5 (SD = 0.62).

5. Conclusions
We have presented an end-to-end system that transforms a DICOM CT into a report that points
out standout measures. Its creation was possible due to the conversion and analysis of a massive
CT data set.

The performed tests showed that the system can segment the selected organs with a DICE
of 89.09%, which is similar to the best existing solutions, analysing a single DICOM in time
close to 5 minutes. Therefore, the proposed workflow of medical image analysis can improve
radiologists’ experience in interaction with digital data, which was confirmed by usability tests.

In the current form, an application started a customer-driven innovation, where, after a good
reception of the introduction of AI in a lower-risk but challenging process of describing a typical
human organ, the workflow can be extended to model and visualise various lung conditions, like
fluid in the pleural cavity and nodules.
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