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Abstract 

The rapid development of large language models significantly impacts software 

development, particularly in code generation. This paper focuses on the analysis of the 

performance and features of ChatGPT and DeepSeek chatbots, based on their GPT-4o 

and V3 models, respectively, with an emphasis on code generation. Particular attention is 

given to the architecture of the models, multimodality, open-source status, and token 

limits. Through experimental evaluation of 60 TypeScript LeetCode problems across 

different difficulty levels, we evaluated accuracy, debugging ability, and the number of 

attempts needed for correct solutions. The results show that DeepSeek achieved an 

accuracy of 68.3%, while ChatGPT achieved 61.7%. The paper highlights the advantages 

of DeepSeek as an open-source option and points to the potential to improve generated 

code, contributing to the understanding of the application of large language models in 

programming. 
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1. Introduction 

Advances in chatbots and large language models (LLMs) have played a major role in 

advancing artificial intelligence (AI), transitioning from simple rule-based systems to 

modern transformer-based models [26] that generate human-like text using neural 

networks [6]. Since the introduction of GPT-1 in 2018 [21], models such as GPT-3 have 

scaled up to billions of parameters, improving text understanding and generation [3]. 

These advances, driven by unsupervised learning [13], have enabled LLMs to adapt to 

various tasks, powering virtual assistants, customer support, and conversational AI like 

ChatGPT [27]. Their versatility comes from training on diverse large datasets, making 

them applicable across industries [13]. In software development, LLMs have the potential 

to automate coding, assist in debugging, and accelerate workflows [12]. 

This paper presents an experimental comparison of two advanced chatbots, ChatGPT, 

which is based on the GPT-4o model (hereafter referred to as ChatGPT-4o) and 

DeepSeek, which utilizes the V3 model, to analyze their code generation capabilities, 

performance, and basic features. The comparison is made by solving the same TypeScript 

programming problems from the LeetCode platform. The LeetCode platform is useful for 

assessing the ability to solve programming problems, and large language models like 
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ChatGPT can solve most LeetCode problems [2]. The focus of the research is on the 

accuracy of the generated solutions, the number of attempts needed for a correct solution, 

and the ability of the models to correct their own mistakes. 

 

2. Related Work 

Previous research has introduced benchmark frameworks to evaluate code generation 

capabilities of LLMs. The HumanEval benchmark [4] evaluates the performance of 

LLMs in code generation tasks. The study [4] showed that Codex solved 28.8% of 

Python problems with single sampling, and up to 70.2% with 100 samples, demonstrating 

how multiple sampling increases accuracy. Similarly, the MBPP benchmark and dataset 

[1], with 974 basic Python problems, shows performance scaling with model parameters, 

and improvement with few-shot prompting, highlighting how prompt design can impact 

code quality. 

Beyond controlled benchmarks, recent work has explored how AI coding assistants 

like GitHub Copilot are being adopted in practice. A study on the use of GitHub Copilot 

[25] indicates that while the tool helps developers by providing an initial starting point, 

the users often struggle to understand or modify the generated code. Moreover, the study 

found no substantial improvement in overall task completion time or success rate in 

practical settings. 

While most existing research has been conducted on ChatGPT [2], [14], [24], which 

has brought revolutionary changes in the field of large language models, particularly in 

the subfield of code generation using artificial intelligence [15], comparatively less 

attention has been given to DeepSeek, resulting in a research gap. 

Research conducted in [22] shows that ChatGPT, based on the GPT-4 model, solved 

a set of programming problems from the LeetCode platform with a success rate of 

71.875%. The study also demonstrated a linear correlation between the acceptance rate of 

problems and ChatGPT’s ability to solve them correctly, meaning that a high acceptance 

rate of a particular problem on the LeetCode platform predicts that ChatGPT will solve it 

successfully. It was concluded that ChatGPT has difficulties in debugging previously 

generated code, as well as in learning from the mistakes that were provided to it as 

feedback. Even after multiple attempts to correct the code based on the feedback, there 

was a decline in performance. 

The paper [23] compares the performances of the ChatGPT model version o3-mini 

and the DeepSeek model version R1 in solving programming tasks from the Codeforces 

platform, using the C++ programming language. Both models demonstrated a high 

accuracy in solving easy tasks. When solving medium-difficulty problems, ChatGPT 

achieved a higher percentage of successfully solved problems, reaching 54.5%, while 

DeepSeek only solved 18.1% of the tasks given. Regarding hard tasks, ChatGPT solved 1 

out of 9, while DeepSeek was not able to solve any of the tasks. Both models are seen as 

good at solving easier tasks, while greater differences in performance are noted when 

solving more complex tasks. 

Additionally, the paper [16] evaluates the performance of the ChatGPT model version 

o1 and the DeepSeek model version R1 by using different metrics like readability, 

efficiency, and correctness. Comparing these models involved analyzing the performance 

and use of computational resources of generated codes as solutions to the programming 

problems in the Python programming language. The results show a slight advantage in 

DeepSeek in terms of code correctness, and the requirement of less attempts to generate 

codes that are acceptable as solutions, especially for problems involving algorithms. 

ChatGPT is more successful than its competitor when it comes to code quality, 

performance, and conciseness. The paper emphasizes the importance of continuous 

research in AI-assisted software development and provides useful insight to programmers 

in selecting the most suitable model as an assistant in software development by 

highlighting the advantages and disadvantages of the models. 

Although there are papers that individually analyze these models, as well as those that 

compare earlier versions of ChatGPT and DeepSeek, a comparison of the ChatGPT-4o 
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and DeepSeek V3 models, in the context of solving TypeScript programming problems 

from the LeetCode platform, has not yet been conducted. This paper contributes to a 

better understanding of their capabilities and performance in practical tasks. 

 

3. Overview of the Evaluated Chatbots 

ChatGPT and DeepSeek are advanced AI chatbots that rely on large language models 

trained using the transformer architecture to generate human-like responses and assist 

users with various tasks [11], [26]. 

GPT-4o, developed by OpenAI, is a multimodal model capable of processing text, 

audio, images, and video inputs [19]. Its training data includes textual and audio data 

available up to October 2023 [19]. It is available to users through desktop, mobile, and 

web applications, and can be integrated into other software via the OpenAI API [18], 

[20]. The GPT-4o model supports an input context window of up to 128,000 tokens and 

can generate up to 16,384 output tokens per request [20]. Unlike the original transformer, 

which uses an encoder-decoder structure, the GPT models rely solely on the decoder 

component for unsupervised training on large text datasets [13], [21]. ChatGPT is 

available to its users through web, desktop, and mobile applications, while GPT models 

can also be used via the OpenAI API (Application Programming Interface) platform, 

allowing integration with other software solutions [18], [20]. 

DeepSeek V3, developed by DeepSeek, is an open-source model and a direct 

competitor to closed-source models [7] like GPT-4o. Using the DeepSeek chatbot, it is 

concluded that DeepSeek V3 is not a fully multimodal model. While users can submit 

images and documents to DeepSeek, the model does not directly analyze images but 

instead extracts embedded text, limiting its multimodal capability compared to ChatGPT. 

Like GPT models, DeepSeek V3 is based on the transformer architecture [26], and 

includes enhancements such as Multi-head Latent Attention (MLA) and a Mixture-of-

Experts (MoE) mechanism [7]. These upgrades allow the model to activate specific 

experts for different tasks, improving efficiency [5]. The DeepSeek V3 model supports 

an input context window of up to 128,000 tokens and a maximum output of 8,000 tokens 

per request [7], [9]. Its knowledge cut-off date is not publicly available. The DeepSeek 

chatbot is available through web and mobile applications, and its models can also be 

accessed via the API platform [8, 9]. 

Table 1. provides a side-by-side comparison of the main technical characteristics and 

design choices of ChatGPT-4o and DeepSeek V3. 

 
Table 1. Features of the ChatGPT-4o and DeepSeek V3 models 

Feature ChatGPT-4o DeepSeek V3 

Architecture Transformer Transformer with MLA and Mixture-

of-Experts 

Multimodality Yes No 

Knowledge cut-off date October 2023 Unknown 

Open-source No Yes 

Platforms Desktop, mobile and web 

applications, API platform 

Mobile and web applications, API 

platform 

Input Context Window 128,000 tokens 128,000 tokens 

Maximum Output Tokens 16,384 tokens 8,000 tokens 

 

4. Methodology 

This section of the paper presents an overview of the methodology used to compare the 

performance of the ChatGPT and DeepSeek chatbots and their GPT-4o and V3 models in 

solving problems from the LeetCode platform. Both models were used with default 

system parameters and temperature, which corresponds to a temperature of 1. Prompts 

were kept simple and consistent across tasks, following a format where the task 

description was passed as a plain string. The following are the key elements of the 

methodology. 
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4.1. Problems 

To compare the performance of the models used by chatbots, 20 problems were selected 

from each of the three difficulty categories available on the LeetCode platform: easy, 

medium, and hard. Problems were randomly selected from the LeetCode platform using 

its “Pick one” option and built-in category filters. Testing across these three categories 

allowed for an assessment of how the models perform when solving problems of varying 

levels of complexity. The same problems were sent to the ChatGPT and DeepSeek 

chatbots and the implementation language was set to TypeScript. Each problem was sent 

with constraints, input and output examples, and in some cases, if provided by the 

LeetCode platform, an explanation. While the focus on accuracy, attempts, and error 

correction is similar to the work reported in [16], the key differences are the 

programming language (TypeScript), task set, platform (LeetCode), and models 

(ChatGPT-4o and DeepSeek V3). An example prompt of one of the easy problems that 

was sent to the ChatGPT and DeepSeek chatbots is shown in Fig. 1. 

 

 
 

Fig. 1. Example prompt of one of the easy problems sent to the chatbots 

 

4.2. Initial Prompt 

Before the problems were sent to the chatbots, they received an introductory prompt to 

ensure they properly understood the task requirements. This prompt was the same for 

both chatbots to ensure they had the same starting conditions. The following prompts 

were specific problems that were presented to both chatbots, one by one. 

The prompt that was sent was as follows: “You are a coding assistant. You will be 

provided with programming challenges, and your task is to solve them in TypeScript 

programming language. Please solve the following problem to the best of your ability.“  

 

4.3. Experimental Procedure 

The experimental procedure, shown in Fig. 2, involved sending the generated code to the 

LeetCode platform for testing. The steps of the procedure were as follows: 

• Sending the initial prompt; 

• Submission of code: after the chatbots received the problem and generated their 
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solutions, the corresponding code was submitted to the LeetCode platform; 

• Code evaluation: the platform issued a verdict for each solution, classifying it as 

accepted or not; 

• Review: if the solution did not pass the initial try, the error received was 

forwarded to the chatbot to make additional corrections. Each chatbot was 

allowed a maximum of three attempts to correct the code. Responses were 

evaluated based on the final verdict. 

 

 
Fig. 2. Experimental procedure flowchart 

 

4.4. Comparison of the Chatbots 

After obtaining the results from the LeetCode platform, the chatbots’ performance was 

compared, including their success in solving programming problems across different 

difficulties and topics, memory usage, and runtime of the generated code. 

 

5. Results 

This section presents the experimental results of testing ChatGPT and DeepSeek 

chatbots, based on their GPT-4o and V3 models, on 60 TypeScript programming 

problems from the LeetCode platform. The tasks were divided equally into three 

categories: easy, medium, and hard, with 20 tasks in each. 

DeepSeek solved 41 out of 60 tasks (68.3%), while ChatGPT solved 37 tasks 

(61.7%). Fig. 3. shows the number of accepted solutions for each difficulty level. For 

easy problems, DeepSeek solved all 20, while ChatGPT solved 18. In the medium-

difficulty group, DeepSeek solved 12 and ChatGPT 11 problems. Regarding hard 

problems, DeepSeek solved 9 and ChatGPT 8. 

 

 
 

Fig. 3. The number of accepted solutions by difficulty categories for the ChatGPT-4o and DeepSeek V3 

models 

 

To determine whether this difference in overall performance is statistically 

significant, McNemar’s test was applied to the paired outcomes. Of the 8 disagreements, 

DeepSeek was correct in 6 cases where ChatGPT was not, and ChatGPT was correct in 2 

cases where DeepSeek was not, resulting in a p-value of 0.289, which is not statistically 

significant at the 0.05 level. 
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For each task, the LeetCode platform provided a verdict of Accepted or an error type. 

The main error types recorded were Wrong Answer, Time Limit Exceeded, and Compile 

Error. Table 2. shows the total number of errors by type for each chatbot. ChatGPT 

generated 19 Wrong Answers, 3 Time Limit Exceeded errors, and 1 Compile Error. 

DeepSeek generated 12 Wrong Answers and 7 Time Limit Exceeded errors, but no 

Compile Errors. 
Table 2.  Number of errors by type 

Error type ChatGPT-4o DeepSeek V3 

Wrong Answer 19 12 

Time Limit Exceeded 3 7 

Compile Error 1 0 

 

Each chatbot was allowed up to three attempts per task. For easy tasks, most correct 

solutions were produced on the first attempt. For medium and hard tasks, both chatbots 

required multiple attempts more often. When an error occurred, LeetCode’s feedback was 

used to resubmit the corrected code within the allowed attempts. 

Across all tasks, runtimes and memory usage generally increased with problem 

complexity. For easy tasks, runtimes were a few milliseconds (ms) and memory usage 

ranged from 55 to 60 megabytes (MB). For medium tasks, runtimes in some cases 

reached tens of milliseconds, with memory usage exceeding 60 MB. Similar values were 

observed for hard tasks. 

Regarding the tasks that were not solved, most had low acceptance rates on the 

LeetCode platform. Among the 19 problems that DeepSeek did not solve, 17 had an 

acceptance rate below 36%, with the remaining two at 43.1% and 69.2%. Regarding 

ChatGPT, 22 out of 23 unsolved problems had an acceptance rate below 46%. 

Among the programming topics covered, arrays, strings, dynamic programming, and 

math problems were the most common. Tasks that required multiple concepts were more 

frequent in the medium and hard categories. 

 

6. Discussion and Limitations 

Both chatbots and their models performed well on easy tasks, providing quick and correct 

solutions. However, accuracy dropped for medium and hard tasks, with frequent issues 

such as type incompatibility and incorrect code generation. DeepSeek encountered more 

Time Limit Exceeded errors, while ChatGPT faced more compile/runtime errors, which 

were generally corrected within three attempts. The most common error was Wrong 

Answer, especially with dynamic programming and multi-topic problems, indicating 

challenges with edge cases and complex algorithms. DeepSeek often provided more 

detailed comments, making it useful for learning programming. Unsolved tasks were 

more complex, requiring higher computational power and longer runtimes. Both models 

excelled with arrays, strings, and simple math, but struggled with dynamic programming 

and combinatorics, emphasizing the need for improved prompt engineering for more 

complex tasks. 

Limitations of the study include the small sample size, focus on TypeScript, and lack 

of in-depth human assessment of code quality or efficiency. The three-attempt limit was 

chosen to simulate real AI coding assistant interactions, but may not reflect the models’ 

full potential for complex tasks. 

Compared to [22], which reported a 71.875% success rate for GPT-4 on LeetCode 

problems, ChatGPT-4o achieved a slightly lower rate of 61.7% in our TypeScript tasks. 

This difference may be attributed to the programming language used, the smaller sample 

size, and the limited number of retries. 

Finally, while an earlier comparison [23] found DeepSeek to underperform ChatGPT 

on medium and hard problems in Python and C++, our results show DeepSeek V3 

slightly outperforming ChatGPT-4o across all difficulty levels. However, McNemar’s 

test suggests this difference is not statistically significant, highlighting the need for larger 

samples and more diverse problem sets. Despite this, our findings align with [16], which 

observed DeepSeek’s slight advantage in code correctness and error correction. 
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7. Future Research Directions 

Considering the limitations of this research, one of the key directions for future research 

is to expand the problem set of the experiment with the inclusion of a larger number of 

problems, as well as topics covered by them. In addition to expanding the set of 

problems, testing the models in different programming languages could contribute to a 

better understanding of their adaptability. Additionally, the inclusion of other chatbots 

that utilize large language models would allow for a more comprehensive comparison of 

the performance of ChatGPT and DeepSeek. 

Another important research area is the optimization of generated code, with a focus 

on efficiency in terms of execution time and memory consumption. In this paper, 

particularly with DeepSeek, difficulties have been observed in solving tasks that require 

high time efficiency. Improvements in the ability of the models to recognize and correct 

their errors would increase their use in software development. 

More research should be done on the importance of prompt engineering to increase 

the accuracy and efficiency of the answers given by LLMs. The formulation of prompts 

can greatly affect the model's output, particularly in more complex tasks [10].  

 

8. Conclusion 

This paper compares the capabilities of ChatGPT and DeepSeek chatbots, based on their 

GPT-4o and V3 models, in solving TypeScript programming problems. The chatbots 

were asked to solve 60 TypeScript programming problems of various difficulties from 

the LeetCode platform. The results show that DeepSeek achieved a success rate of 

68.3%, and ChatGPT achieved a rate of 61.7%.  

Both chatbots performed reliably on easy tasks, but struggled with medium and hard 

problems, which often cover multiple topics. Their models efficiently managed memory 

and runtimes for simpler tasks, while having an increase in both parameters when solving 

more complex problems. 

While both chatbots demonstrated moderate success on the selected tasks, this study 

serves as an initial step in understanding their potential role in developer workflows. 

Broader validation of real-world tasks is needed to determine their practical applicability. 

DeepSeek is an attractive option for users who want a cost-effective or an open-

source solution while maintaining a high performance [17]. DeepSeek’s ability to 

generate code with detailed explanations and comments is particularly beneficial when 

learning to code. The main disadvantage of DeepSeek is that it does not use a multimodal 

model like its competitor ChatGPT does. The multimodality of its model makes 

ChatGPT suitable for various uses alongside programming [11]. 

In conclusion, while the chatbots are not yet fully capable of solving difficult 

programming problems, they represent a significant step forward in the development of 

programming tools. Future research should focus on improving the quality of generated 

code, better understanding of the impact of prompt engineering, and improving the ability 

of models to correct themselves. 
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