
33RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2025 BELGRADE, SERBIA)

Comparing Code Generation Capabilities of ChatGPT-4o and

DeepSeek V3 in Solving TypeScript Programming Problems

Filip Stamenković

University of Belgrade

Faculty of Organizational Sciences

Belgrade, Serbia filip.stamenkovic@fon.bg.ac.rs

Jelica Stanojević

University of Belgrade

Faculty of Organizational Sciences

Belgrade, Serbia jelica.stanojevic@fon.bg.ac.rs

Dejan Simić

University of Belgrade

Faculty of Organizational Sciences

Belgrade, Serbia dejan.simic@fon.bg.ac.rs

Abstract

The rapid development of large language models significantly impacts software

development, particularly in code generation. This paper focuses on the analysis of the

performance and features of ChatGPT and DeepSeek chatbots, based on their GPT-4o

and V3 models, respectively, with an emphasis on code generation. Particular attention is

given to the architecture of the models, multimodality, open-source status, and token

limits. Through experimental evaluation of 60 TypeScript LeetCode problems across

different difficulty levels, we evaluated accuracy, debugging ability, and the number of

attempts needed for correct solutions. The results show that DeepSeek achieved an

accuracy of 68.3%, while ChatGPT achieved 61.7%. The paper highlights the advantages

of DeepSeek as an open-source option and points to the potential to improve generated

code, contributing to the understanding of the application of large language models in

programming.

Keywords: ChatGPT-4o, DeepSeek V3, large language model, chatbot, programming.

1. Introduction

Advances in chatbots and large language models (LLMs) have played a major role in

advancing artificial intelligence (AI), transitioning from simple rule-based systems to

modern transformer-based models [26] that generate human-like text using neural

networks [6]. Since the introduction of GPT-1 in 2018 [21], models such as GPT-3 have

scaled up to billions of parameters, improving text understanding and generation [3].

These advances, driven by unsupervised learning [13], have enabled LLMs to adapt to

various tasks, powering virtual assistants, customer support, and conversational AI like

ChatGPT [27]. Their versatility comes from training on diverse large datasets, making

them applicable across industries [13]. In software development, LLMs have the potential

to automate coding, assist in debugging, and accelerate workflows [12].

This paper presents an experimental comparison of two advanced chatbots, ChatGPT,

which is based on the GPT-4o model (hereafter referred to as ChatGPT-4o) and

DeepSeek, which utilizes the V3 model, to analyze their code generation capabilities,

performance, and basic features. The comparison is made by solving the same TypeScript

programming problems from the LeetCode platform. The LeetCode platform is useful for

assessing the ability to solve programming problems, and large language models like

STAMENKOVIĆ ET AL. COMPARING CODE GENERATION CAPABILITIES...

ChatGPT can solve most LeetCode problems [2]. The focus of the research is on the

accuracy of the generated solutions, the number of attempts needed for a correct solution,

and the ability of the models to correct their own mistakes.

2. Related Work

Previous research has introduced benchmark frameworks to evaluate code generation

capabilities of LLMs. The HumanEval benchmark [4] evaluates the performance of

LLMs in code generation tasks. The study [4] showed that Codex solved 28.8% of

Python problems with single sampling, and up to 70.2% with 100 samples, demonstrating

how multiple sampling increases accuracy. Similarly, the MBPP benchmark and dataset

[1], with 974 basic Python problems, shows performance scaling with model parameters,

and improvement with few-shot prompting, highlighting how prompt design can impact

code quality.

Beyond controlled benchmarks, recent work has explored how AI coding assistants

like GitHub Copilot are being adopted in practice. A study on the use of GitHub Copilot

[25] indicates that while the tool helps developers by providing an initial starting point,

the users often struggle to understand or modify the generated code. Moreover, the study

found no substantial improvement in overall task completion time or success rate in

practical settings.

While most existing research has been conducted on ChatGPT [2], [14], [24], which

has brought revolutionary changes in the field of large language models, particularly in

the subfield of code generation using artificial intelligence [15], comparatively less

attention has been given to DeepSeek, resulting in a research gap.

Research conducted in [22] shows that ChatGPT, based on the GPT-4 model, solved

a set of programming problems from the LeetCode platform with a success rate of

71.875%. The study also demonstrated a linear correlation between the acceptance rate of

problems and ChatGPT’s ability to solve them correctly, meaning that a high acceptance

rate of a particular problem on the LeetCode platform predicts that ChatGPT will solve it

successfully. It was concluded that ChatGPT has difficulties in debugging previously

generated code, as well as in learning from the mistakes that were provided to it as

feedback. Even after multiple attempts to correct the code based on the feedback, there

was a decline in performance.

The paper [23] compares the performances of the ChatGPT model version o3-mini

and the DeepSeek model version R1 in solving programming tasks from the Codeforces

platform, using the C++ programming language. Both models demonstrated a high

accuracy in solving easy tasks. When solving medium-difficulty problems, ChatGPT

achieved a higher percentage of successfully solved problems, reaching 54.5%, while

DeepSeek only solved 18.1% of the tasks given. Regarding hard tasks, ChatGPT solved 1

out of 9, while DeepSeek was not able to solve any of the tasks. Both models are seen as

good at solving easier tasks, while greater differences in performance are noted when

solving more complex tasks.

Additionally, the paper [16] evaluates the performance of the ChatGPT model version

o1 and the DeepSeek model version R1 by using different metrics like readability,

efficiency, and correctness. Comparing these models involved analyzing the performance

and use of computational resources of generated codes as solutions to the programming

problems in the Python programming language. The results show a slight advantage in

DeepSeek in terms of code correctness, and the requirement of less attempts to generate

codes that are acceptable as solutions, especially for problems involving algorithms.

ChatGPT is more successful than its competitor when it comes to code quality,

performance, and conciseness. The paper emphasizes the importance of continuous

research in AI-assisted software development and provides useful insight to programmers

in selecting the most suitable model as an assistant in software development by

highlighting the advantages and disadvantages of the models.

Although there are papers that individually analyze these models, as well as those that

compare earlier versions of ChatGPT and DeepSeek, a comparison of the ChatGPT-4o

ISD2025 BELGRADE, SERBIA

and DeepSeek V3 models, in the context of solving TypeScript programming problems

from the LeetCode platform, has not yet been conducted. This paper contributes to a

better understanding of their capabilities and performance in practical tasks.

3. Overview of the Evaluated Chatbots

ChatGPT and DeepSeek are advanced AI chatbots that rely on large language models

trained using the transformer architecture to generate human-like responses and assist

users with various tasks [11], [26].

GPT-4o, developed by OpenAI, is a multimodal model capable of processing text,

audio, images, and video inputs [19]. Its training data includes textual and audio data

available up to October 2023 [19]. It is available to users through desktop, mobile, and

web applications, and can be integrated into other software via the OpenAI API [18],

[20]. The GPT-4o model supports an input context window of up to 128,000 tokens and

can generate up to 16,384 output tokens per request [20]. Unlike the original transformer,

which uses an encoder-decoder structure, the GPT models rely solely on the decoder

component for unsupervised training on large text datasets [13], [21]. ChatGPT is

available to its users through web, desktop, and mobile applications, while GPT models

can also be used via the OpenAI API (Application Programming Interface) platform,

allowing integration with other software solutions [18], [20].

DeepSeek V3, developed by DeepSeek, is an open-source model and a direct

competitor to closed-source models [7] like GPT-4o. Using the DeepSeek chatbot, it is

concluded that DeepSeek V3 is not a fully multimodal model. While users can submit

images and documents to DeepSeek, the model does not directly analyze images but

instead extracts embedded text, limiting its multimodal capability compared to ChatGPT.

Like GPT models, DeepSeek V3 is based on the transformer architecture [26], and

includes enhancements such as Multi-head Latent Attention (MLA) and a Mixture-of-

Experts (MoE) mechanism [7]. These upgrades allow the model to activate specific

experts for different tasks, improving efficiency [5]. The DeepSeek V3 model supports

an input context window of up to 128,000 tokens and a maximum output of 8,000 tokens

per request [7], [9]. Its knowledge cut-off date is not publicly available. The DeepSeek

chatbot is available through web and mobile applications, and its models can also be

accessed via the API platform [8, 9].

Table 1. provides a side-by-side comparison of the main technical characteristics and

design choices of ChatGPT-4o and DeepSeek V3.

Table 1. Features of the ChatGPT-4o and DeepSeek V3 models

Feature ChatGPT-4o DeepSeek V3

Architecture Transformer Transformer with MLA and Mixture-

of-Experts

Multimodality Yes No

Knowledge cut-off date October 2023 Unknown

Open-source No Yes

Platforms Desktop, mobile and web

applications, API platform

Mobile and web applications, API

platform

Input Context Window 128,000 tokens 128,000 tokens

Maximum Output Tokens 16,384 tokens 8,000 tokens

4. Methodology

This section of the paper presents an overview of the methodology used to compare the

performance of the ChatGPT and DeepSeek chatbots and their GPT-4o and V3 models in

solving problems from the LeetCode platform. Both models were used with default

system parameters and temperature, which corresponds to a temperature of 1. Prompts

were kept simple and consistent across tasks, following a format where the task

description was passed as a plain string. The following are the key elements of the

methodology.

STAMENKOVIĆ ET AL. COMPARING CODE GENERATION CAPABILITIES...

4.1. Problems

To compare the performance of the models used by chatbots, 20 problems were selected

from each of the three difficulty categories available on the LeetCode platform: easy,

medium, and hard. Problems were randomly selected from the LeetCode platform using

its “Pick one” option and built-in category filters. Testing across these three categories

allowed for an assessment of how the models perform when solving problems of varying

levels of complexity. The same problems were sent to the ChatGPT and DeepSeek

chatbots and the implementation language was set to TypeScript. Each problem was sent

with constraints, input and output examples, and in some cases, if provided by the

LeetCode platform, an explanation. While the focus on accuracy, attempts, and error

correction is similar to the work reported in [16], the key differences are the

programming language (TypeScript), task set, platform (LeetCode), and models

(ChatGPT-4o and DeepSeek V3). An example prompt of one of the easy problems that

was sent to the ChatGPT and DeepSeek chatbots is shown in Fig. 1.

Fig. 1. Example prompt of one of the easy problems sent to the chatbots

4.2. Initial Prompt

Before the problems were sent to the chatbots, they received an introductory prompt to

ensure they properly understood the task requirements. This prompt was the same for

both chatbots to ensure they had the same starting conditions. The following prompts

were specific problems that were presented to both chatbots, one by one.

The prompt that was sent was as follows: “You are a coding assistant. You will be

provided with programming challenges, and your task is to solve them in TypeScript

programming language. Please solve the following problem to the best of your ability.“

4.3. Experimental Procedure

The experimental procedure, shown in Fig. 2, involved sending the generated code to the

LeetCode platform for testing. The steps of the procedure were as follows:

• Sending the initial prompt;

• Submission of code: after the chatbots received the problem and generated their

ISD2025 BELGRADE, SERBIA

solutions, the corresponding code was submitted to the LeetCode platform;

• Code evaluation: the platform issued a verdict for each solution, classifying it as

accepted or not;

• Review: if the solution did not pass the initial try, the error received was

forwarded to the chatbot to make additional corrections. Each chatbot was

allowed a maximum of three attempts to correct the code. Responses were

evaluated based on the final verdict.

Fig. 2. Experimental procedure flowchart

4.4. Comparison of the Chatbots

After obtaining the results from the LeetCode platform, the chatbots’ performance was

compared, including their success in solving programming problems across different

difficulties and topics, memory usage, and runtime of the generated code.

5. Results

This section presents the experimental results of testing ChatGPT and DeepSeek

chatbots, based on their GPT-4o and V3 models, on 60 TypeScript programming

problems from the LeetCode platform. The tasks were divided equally into three

categories: easy, medium, and hard, with 20 tasks in each.

DeepSeek solved 41 out of 60 tasks (68.3%), while ChatGPT solved 37 tasks

(61.7%). Fig. 3. shows the number of accepted solutions for each difficulty level. For

easy problems, DeepSeek solved all 20, while ChatGPT solved 18. In the medium-

difficulty group, DeepSeek solved 12 and ChatGPT 11 problems. Regarding hard

problems, DeepSeek solved 9 and ChatGPT 8.

Fig. 3. The number of accepted solutions by difficulty categories for the ChatGPT-4o and DeepSeek V3

models

To determine whether this difference in overall performance is statistically

significant, McNemar’s test was applied to the paired outcomes. Of the 8 disagreements,

DeepSeek was correct in 6 cases where ChatGPT was not, and ChatGPT was correct in 2

cases where DeepSeek was not, resulting in a p-value of 0.289, which is not statistically

significant at the 0.05 level.

STAMENKOVIĆ ET AL. COMPARING CODE GENERATION CAPABILITIES...

For each task, the LeetCode platform provided a verdict of Accepted or an error type.

The main error types recorded were Wrong Answer, Time Limit Exceeded, and Compile

Error. Table 2. shows the total number of errors by type for each chatbot. ChatGPT

generated 19 Wrong Answers, 3 Time Limit Exceeded errors, and 1 Compile Error.

DeepSeek generated 12 Wrong Answers and 7 Time Limit Exceeded errors, but no

Compile Errors.
Table 2. Number of errors by type

Error type ChatGPT-4o DeepSeek V3

Wrong Answer 19 12

Time Limit Exceeded 3 7

Compile Error 1 0

Each chatbot was allowed up to three attempts per task. For easy tasks, most correct

solutions were produced on the first attempt. For medium and hard tasks, both chatbots

required multiple attempts more often. When an error occurred, LeetCode’s feedback was

used to resubmit the corrected code within the allowed attempts.

Across all tasks, runtimes and memory usage generally increased with problem

complexity. For easy tasks, runtimes were a few milliseconds (ms) and memory usage

ranged from 55 to 60 megabytes (MB). For medium tasks, runtimes in some cases

reached tens of milliseconds, with memory usage exceeding 60 MB. Similar values were

observed for hard tasks.

Regarding the tasks that were not solved, most had low acceptance rates on the

LeetCode platform. Among the 19 problems that DeepSeek did not solve, 17 had an

acceptance rate below 36%, with the remaining two at 43.1% and 69.2%. Regarding

ChatGPT, 22 out of 23 unsolved problems had an acceptance rate below 46%.

Among the programming topics covered, arrays, strings, dynamic programming, and

math problems were the most common. Tasks that required multiple concepts were more

frequent in the medium and hard categories.

6. Discussion and Limitations

Both chatbots and their models performed well on easy tasks, providing quick and correct

solutions. However, accuracy dropped for medium and hard tasks, with frequent issues

such as type incompatibility and incorrect code generation. DeepSeek encountered more

Time Limit Exceeded errors, while ChatGPT faced more compile/runtime errors, which

were generally corrected within three attempts. The most common error was Wrong

Answer, especially with dynamic programming and multi-topic problems, indicating

challenges with edge cases and complex algorithms. DeepSeek often provided more

detailed comments, making it useful for learning programming. Unsolved tasks were

more complex, requiring higher computational power and longer runtimes. Both models

excelled with arrays, strings, and simple math, but struggled with dynamic programming

and combinatorics, emphasizing the need for improved prompt engineering for more

complex tasks.

Limitations of the study include the small sample size, focus on TypeScript, and lack

of in-depth human assessment of code quality or efficiency. The three-attempt limit was

chosen to simulate real AI coding assistant interactions, but may not reflect the models’

full potential for complex tasks.

Compared to [22], which reported a 71.875% success rate for GPT-4 on LeetCode

problems, ChatGPT-4o achieved a slightly lower rate of 61.7% in our TypeScript tasks.

This difference may be attributed to the programming language used, the smaller sample

size, and the limited number of retries.

Finally, while an earlier comparison [23] found DeepSeek to underperform ChatGPT

on medium and hard problems in Python and C++, our results show DeepSeek V3

slightly outperforming ChatGPT-4o across all difficulty levels. However, McNemar’s

test suggests this difference is not statistically significant, highlighting the need for larger

samples and more diverse problem sets. Despite this, our findings align with [16], which

observed DeepSeek’s slight advantage in code correctness and error correction.

ISD2025 BELGRADE, SERBIA

7. Future Research Directions

Considering the limitations of this research, one of the key directions for future research

is to expand the problem set of the experiment with the inclusion of a larger number of

problems, as well as topics covered by them. In addition to expanding the set of

problems, testing the models in different programming languages could contribute to a

better understanding of their adaptability. Additionally, the inclusion of other chatbots

that utilize large language models would allow for a more comprehensive comparison of

the performance of ChatGPT and DeepSeek.

Another important research area is the optimization of generated code, with a focus

on efficiency in terms of execution time and memory consumption. In this paper,

particularly with DeepSeek, difficulties have been observed in solving tasks that require

high time efficiency. Improvements in the ability of the models to recognize and correct

their errors would increase their use in software development.

More research should be done on the importance of prompt engineering to increase

the accuracy and efficiency of the answers given by LLMs. The formulation of prompts

can greatly affect the model's output, particularly in more complex tasks [10].

8. Conclusion

This paper compares the capabilities of ChatGPT and DeepSeek chatbots, based on their

GPT-4o and V3 models, in solving TypeScript programming problems. The chatbots

were asked to solve 60 TypeScript programming problems of various difficulties from

the LeetCode platform. The results show that DeepSeek achieved a success rate of

68.3%, and ChatGPT achieved a rate of 61.7%.

Both chatbots performed reliably on easy tasks, but struggled with medium and hard

problems, which often cover multiple topics. Their models efficiently managed memory

and runtimes for simpler tasks, while having an increase in both parameters when solving

more complex problems.

While both chatbots demonstrated moderate success on the selected tasks, this study

serves as an initial step in understanding their potential role in developer workflows.

Broader validation of real-world tasks is needed to determine their practical applicability.

DeepSeek is an attractive option for users who want a cost-effective or an open-

source solution while maintaining a high performance [17]. DeepSeek’s ability to

generate code with detailed explanations and comments is particularly beneficial when

learning to code. The main disadvantage of DeepSeek is that it does not use a multimodal

model like its competitor ChatGPT does. The multimodality of its model makes

ChatGPT suitable for various uses alongside programming [11].

In conclusion, while the chatbots are not yet fully capable of solving difficult

programming problems, they represent a significant step forward in the development of

programming tools. Future research should focus on improving the quality of generated

code, better understanding of the impact of prompt engineering, and improving the ability

of models to correct themselves.

References

1. Austin, J. et al.: Program Synthesis with Large Language Models,

http://arxiv.org/abs/2108.07732, (2021)

2. Billah, M.M., Roy, P.R., Codabux, Z., Roy, B.: Are Large Language Models a Threat to

Programming Platforms? An Exploratory Study. In: Proceedings of the 18th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement. pp. 292–

301. ACM, Barcelona Spain (2024)

3. Brown, T.B. et al.: Language Models are Few-Shot Learners,

http://arxiv.org/abs/2005.14165, (2020)

4. Chen, M. et al.: Evaluating Large Language Models Trained on Code,

http://arxiv.org/abs/2107.03374, (2021)

5. Dai, D. et al.: DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-

STAMENKOVIĆ ET AL. COMPARING CODE GENERATION CAPABILITIES...

Experts Language Models, http://arxiv.org/abs/2401.06066, (2024)

6. Dam, S.K., Hong, C.S., Qiao, Y., Zhang, C.: A Complete Survey on LLM-based AI

Chatbots, http://arxiv.org/abs/2406.16937, (2024)

7. DeepSeek-AI et al.: DeepSeek-V3 Technical Report, http://arxiv.org/abs/2412.19437,

(2025)

8. DeepSeek-AI: Introducing DeepSeek App | DeepSeek API Docs, https://api-

docs.deepseek.com/news/news250115, Accessed: April 06, 2025

9. DeepSeek-AI: Models & Pricing | DeepSeek API Docs, https://api-

docs.deepseek.com/quick_start/pricing, Accessed: April 06, 2025

10. Gao, A.K.: Prompt Engineering for Large Language Models,

http://dx.doi.org/10.2139/ssrn.4504303, (2023)

11. Islam, R., Moushi, O.M.: GPT-4o: The Cutting-Edge Advancement in Multimodal LLM,

https://www.techrxiv.org/users/771522/articles/1121145-gpt-4o-the-cutting-edge-

advancement-in-multimodal-

llm?commit=61ade21aa7b17723ee28564be40f083768c69df8, (2024)

12. Konda, R.: AI-Powered Code Generation Evaluating the Effectiveness of Large Language

Models (LLMs) in Automated Software Development. J. Artif. Intell. Cloud Comput. 1–6

(2023)

13. Koubaa, A., Boulila, W., Ghouti, L., Alzahem, A., Latif, S.: Exploring ChatGPT

Capabilities and Limitations: A Survey. IEEE Access. 11 118698–118721 (2023)

14. Liu, Y. et al.: Summary of ChatGPT-Related research and perspective towards the future

of large language models. Meta-Radiol. 1 (2), 100017 (2023)

15. Liu, Z., Tang, Y., Luo, X., Zhou, Y., Zhang, L.F.: No Need to Lift a Finger Anymore?

Assessing the Quality of Code Generation by ChatGPT, http://arxiv.org/abs/2308.04838,

(2024)

16. Manik, M.H.: ChatGPT vs. DeepSeek: A Comparative Study on AI-Based Code

Generation, https://doi.org/10.48550/arXiv.2502.18467, (2025)

17. Normile, D.: Chinese firm’s large language model makes a splash. Science. 387(6731)

238 (2025)

18. OpenAI: Download ChatGPT | OpenAI, https://openai.com/chatgpt/download/, Accessed:

April 06, 2025

19. OpenAI et al.: GPT-4o System Card, http://arxiv.org/abs/2410.21276, (2024)

20. OpenAI: Models - OpenAI API, https://platform.openai.com/docs/models/gpt-4o,

Accessed: April 06, 2025

21. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving Language

Understanding by Generative Pre-Training,

https://api.semanticscholar.org/CorpusID:49313245, (2018)

22. Sakib, F.A., Khan, S.H., Karim, A.H.M.R.: Extending the Frontier of ChatGPT: Code

Generation and Debugging, http://arxiv.org/abs/2307.08260, (2023)

23. Shakya, R., Vadiee, F., Khalil, M.: A Showdown of ChatGPT vs DeepSeek in Solving

Programming Tasks. Presented at the 2025 International Conference on New Trends in

Computing Sciences (ICTCS), (2025)

24. Sohail, S.S. et al.: Decoding ChatGPT: A Taxonomy of Existing Research, Current

Challenges, and Possible Future Directions. J. King Saud Univ. - Comput. Inf. Sci. 35 (8),

101675 (2023)

25. Vaithilingam, P., Zhang, T., Glassman, E.L.: Expectation vs. Experience: Evaluating the

Usability of Code Generation Tools Powered by Large Language Models. In: CHI

Conference on Human Factors in Computing Systems Extended Abstracts. pp. 1–7.

ACM, New Orleans LA USA (2022)

26. Vaswani, A. et al.: Attention Is All You Need, http://arxiv.org/abs/1706.03762, (2023)

27. Wu, T. et al.: A Brief Overview of ChatGPT: The History, Status Quo and Potential

Future Development. IEEECAA J. Autom. Sin. 10 (5), 1122–1136 (2023)

