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Abstract

We present a novel approach for identifying persistently misclassified images in real-world thy-
roid ultrasound data. Using 484 images of thyroid nodules, we evaluated four different convolu-
tional neural network architectures. Persistent misclassification is defined as images repeatedly
misclassified across models and cross-validation folds. These cases are validated by an experi-
enced radiologist and subjected to Grad-CAM analysis. Results confirm that images, that have
negative impact on model results, often exhibit atypical or ambiguous features. We emphasize
that persistent misclassification is an important source of diagnostic error, independent of model
choice. Recognizing misleading cases is crucial for dataset quality, model robustness and the
trustworthiness of AI systems in clinical applications. This work highlights the need for incor-
poration data validation strategies alongside standard performance metrics in the development
of deep learning models.
Keywords: persistent misclassification; thyroid cancer; deep learning; convolutional neural
networks; Grad-CAM; medical imaging; cross-validation, impactful images, ultrasound data.

1. Introduction
Modern medical diagnostics increasingly rely on statistical analysis and, more recently, on AI
and machine learning techniques. In the field of medical image diagnostics, the commonly used
techniques are deep neural networks, in particular algorithms designed for image analysis - con-
volutional neural networks (CNN). CNN are a class of deep learning models designed to process
data with a grid-like topology. Convolutional layers are used to capture spatial hierarchies and
detect important image features. CNN models have been widely adopted in a variety of image
and video-related tasks, including object detection, scene recognition and image classification.
The introduction of increasingly sophisticated neural network architectures has consistently re-
sulted in enhanced performance outcomes [23]. Deep learning has been widely adopted by
researchers for diagnosing a broad spectrum of diseases, such as breast cancer [1], melanoma
and lung cancer [2]. Among deep learning models, convolutional neural networks CNN have
become a standard approach in medical image analysis. Numerous studies have validated the
effectiveness of CNN-based methods, which have been successfully applied to the analysis of
MRI [4], X-ray, CT scans [30], ultrasound images [13], [20], skin cancer [15], brain tumors [9]
and liver lesions [21].

However CNN models can be significantly affected by certain images within a dataset. Some
images may be inherently ambiguous, mislabeled or simply too difficult to classify consistently,
even for state-of-the-art models. These problematic samples can erode overall model perfor-
mance by introducing noise during training or bias during evaluation. A question arises: what if
we could systematically identify and exclude such images from training and evaluation process?
Removing them from the training set may improve generalization and reduce noise. Understand-
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ing how each individual image impacts model performance can help to locate these misleading
samples.

One of the most popular approaches for assessing model performance is cross-validation.
This technique ensures that the data used for testing are separate from those used in model
training. A machine learning model learns patterns from a training set and is then evaluated
on a distinct test dataset, which contains known classification labels. While cross-validation is
a widely used method for model evaluation, it has limitations in medical imaging [25]. The
assumption of independent and identically distributed samples is often violated due to corre-
lated images from the same patient or similar acquisition conditions, leading to biased results.
Additionally, feature imbalance within images can cause uneven representation across folds. In
small datasets, common in rare diseases or specialized imaging, cross-validation can produce
high variance and hinder deep learning models from learning stable, generalizable patterns.

The goal of this paper is to propose a novel, systematic approach for identifying images
that negatively influence the performance of thyroid cancer classification models during cross-
validation. We focus on detecting images that contain feature patterns which, when included
in the training process, consistently lead to poor predictive outcomes. These so-called harmful
images may either introduce noise, reflect underrepresented classes or embody ambiguous visual
characteristics that confuse the learning process. By identifying and analyzing these images, we
can to improve model robustness and enhance the reliability of the classification.

We introduce a concept of persistent misclassification analysis. For each image in the
dataset, we track its classification outcomes across multiple cross-validation runs and differ-
ent CNN architectures. We identify images that are repeatedly misclassified across runs and
label them as systematically misclassified or harmful. For each model and iteration, we record
how often each image appears in the training and test sets, whether it was correctly classified
and which ultrasound features it exhibit. This approach allows us to analyze the consistency
of model errors and explore how excluding problematic images improves classification perfor-
mance.

We focus on the classification of thyroid cancer using ultrasound images, which are com-
monly employed in clinical practice for the evaluation of thyroid nodules. Distinguishing be-
tween malignant and benign thyroid nodule is crucial, because accurate identification not only
avoids over treatment but also facilitates timely cancer detection [10]. A major challenge in this
diagnostic process is the identification of robust features such as echogenicity or irregular shape
as well as ensuring the appropriate quality of images.

Once misleading images have been identified, we use the proven Grad-CAM algorithm to
investigate them. Grad-CAM was originally introduced by Selvaraju et al. [17] to provide vi-
sual explanations for CNN-based decisions. The algorithm is able to highlight regions of input
images that influence predictions most strongly. It has been adopted in medical imaging for
interpretability, particularly in domains where understanding model reasoning is important [26].

2. Related work and motivation
Recent studies have demonstrated that CNN can achieve high accuracy in differentiating benign
from malignant thyroid nodules, often exceeding 80% accuracy and reaching area under the
curve (AUC) values of up to 85% [8]. Several well-known CNN architectures have been applied
to thyroid nodule classification tasks, including models from the VGG family [7], ResNet [6],
InceptionNet [20] and DenseNet architectures [24].

These studies have explored multiple CNN architectures and methods for robust training.
However, less attention has been paid to identifying specific training samples that harm model
generalization. This issue is visible when trying to recreate the results of previous studies by
running CNN models on other data sets. The low quality of such models results from the large
dependence of the model parameters on the specific features of the training images (also in-
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cluding artifacts or low quality images). In these models, certain training samples (images) can
negatively influence the model by introducing noise, spurious correlations or ambiguous pat-
terns that degrade generalization performance. Previous studies confirm the existence of these
limitations. E.g. Recht et al. [14] demonstrated that model performance can degrade on new
test sets drawn from the same distribution, emphasizing the sensitivity of deep learning mod-
els. Zech et al. [27] showed that CNNs trained on chest X-ray data generalized poorly across
institutions, partly due to confounding variables. Ribeiro et al. [16] proposed LIME for model
interpretability, indirectly supporting case-level error analysis. Oakden-Rayner [12] highlighted
how high-performing models can still fail on edge cases due to spurious correlations.

Several studies have explored methods for detecting and mitigating the effects of such im-
pactful data. Influence functions, as introduced by Koh and Liang [5], offer a theoretical frame-
work to estimate the impact of individual training points on model predictions. This approach
has been used to trace mispredictions back to specific harmful training examples. However,
influence functions are computationally expensive for large models like CNN and may not scale
well with high-dimensional image data. Moreover, Toneva et al. [22] proposed the concept of
forgetting events during training as a way to identify potentially noisy or unlearnable exam-
ples. They found that some data points are repeatedly forgotten across training epochs, and that
removing such samples can improve model performance. This is particularly relevant in our
context, where persistently misclassified images may reflect similar underlying issues.

Moreover, recent studies have demonstrated the utility of Grad-CAM method in analyz-
ing correct and incorrect classifications [28], [19]. In thyroid ultrasound analysis, Grad-CAM
is used to identify misleading images that may cause erroneous model decisions, by revealing
whether the network focuses on medically irrelevant features [31]. Furthermore, by visualiz-
ing activation regions, Grad-CAM can assess how CNN behave on specific cases, helping to
understand model biases [18].

Another line of research focuses on memorization in deep networks. Zhang et al. [29]
demonstrated that deep neural networks are capable of memorizing random labels, raising con-
cerns about their ability to generalize when trained on datasets with ambiguous samples.

In medical imaging Oakden-Rayner et al. [12] emphasized the risks of hidden stratifica-
tion—where model performance appears high on aggregate metrics but fails on clinically im-
portant subgroups. This phenomenon can be driven by underrepresented samples that systemat-
ically bias the model. Similarly, Northcutt et al. [11] developed confident learning, a technique
for detecting label errors in datasets, which is especially useful in domains with subjective la-
beling such as histopathology or ultrasound.

These studies collectively highlight the critical need for methods that can identify and man-
age misleading training data. Our work builds on this foundation by applying a concept of
persistent misclassification analysis across CNN models and cross-validation iterations.

3. Method
This study is a retrospective analysis of US images of focal thyroid lesions in patients of Maria
Skłodowska-Curie National Research Institute of Oncology in Warsaw (Poland). The dataset
consist of 270 thyroid nodules from 270 patients who underwent diagnostic ultrasound exam-
inations. Nodules with initial non-diagnostic or indeterminate cytologic findings that were not
confirmed by subsequent histologic evaluation were excluded from the dataset. After this re-
moval, the dataset consists of 242 nodules from 242 patients, resulting in a total of 484 ultra-
sound images.

Each nodule is captured in two orthogonal planes, providing paired images of the same focal
change. Nodules are classified into two categories: malignant or benign (based on histopatho-
logical examination). Furthermore all images are manually reviewed by an experienced di-
agnostician. The expert evaluated each image for 20 known sonographic features that affect
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nodule classification, including: echogenicity (the relative brightness of the nodule compared
to surrounding tissue), shape (round, oval, or irregular forms), borders (whether the edges were
well-defined or blurred), presence of calcification, cystic components, shadowing artifacts, etc.
This analysis of US features helped correlate image-level classification errors with clinically
relevant visual patterns, providing insight into the limitations of CNN models.

Images were then cropped and resized to a fixed resolution of 140× 140 pixels and 3 color
channels, to ensure consistency across the dataset and compatibility with standard CNN archi-
tectures.

To assess the effect of individual images on model performance, we constructed a diverse
set of 4 convolutional neural network (CNN) models. These included established architectures
such as ResNet (ResNet152) DenseNet (DenseNet121) and two relatively simple (in terms of
number of convolution layers) custom architectures designed and trained from scratch (cnn1
and cnn2). The custom models varied in depth and convolutional structure, as well as number
of trainable parameters (132775 in cnn1 and 314230 in cnn2 respectively).

Table 1. Mean, minimum, and maximum AUC scores for selected models

Model Conv. layers AUC (mean) ± std. dev. AUC (min) AUC (max)
ResNet152 151 0.81± 0.05 0.76 0.93
cnn1 6 0.80± 0.03 0.74 0.86
cnn2 7 0.83± 0.04 0.74 0.90
denseNet121 120 0.86± 0.03 0.80 0.91

For each model, we performed 100 randomized dataset splits into training (80%), validation
(10%), and test (10%) subsets. We performed 100 iterations to increase the variability of the
data division into training and test sets as much as possible. The splits were stratified to preserve
target class distribution across folds. During each training run, model predictions were logged
for all test samples, along with the cut-off threshold values. This setup enabled detailed tracking
of individual image behavior across multiple architectures and training scenarios. Aggregated
AUC results of these iterations are presented in table 1

The framework was implemented in Python programming language. The source code and
detailed architecture of cnn1 and cnn2 models are published in the author’s public GitHub repos-
itory1.

We define a persistent misclassification as the phenomenon where a given image is misclas-
sified in a high proportion of cross-validation iterations, despite variation in model initialization,
architecture, and data splits. We focus on images misclassified in more than 90% (we assume
threshold θ = 0.9) of 100 cross-validation iterations across 4 CNN model architectures.

For each image in the dataset, we track its classification outcome across cross-validation
iterations for each model. We focus on test set predictions but we control train and validation
dataset structure as well. For each image j, we define its misclassification frequency Fj as:
Fj =

Ej

Oj
, where Ej is a number of incorrect classifications of image j and Oj is a total number

of times image j appeared in the test dataset. Images with Fj > θ are labeled as systematically
misclassified (harmful) images. For each CNN model and for each iteration, we record a number
of times each image appeared in the training and test datasets. Then, we log a number of times
the image was correctly classified. Moreover, we record US image features described by an
experienced diagnostician, along with an indication of the percentage of nodules that have a
given feature (in the entire data set and in the training set). In the experiment, we used the κ
value as the threshold for improving AUC after excluding impactful images. Initially, we used

1https://github.com/mrafalo/persistent-misclassification
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κ = 0.05. If in a given iteration of the algorithm we do not have adequate AUC improvement,
then we slightly decrease (by 0.01) θ value to reduce the rigor of the image search. The persistent
misclassification evaluation algorithm is presented in the algorithm diagram 1.

Algorithm 1 Image misclassification evaluation algorithm

1: Set θ = 0.9
2: Set κ = 0.05
3: for each model M in model list do
4: for each iteration i = 1 to 100 do
5: Randomly split dataset into train (80%), validation (10%) and test (10%) datasets
6: Train model M on training set
7: Validate model on validation set
8: for each image k from test dataset do
9: Predict labels on image k

10: Save model prediction p, actual value a and threshold value t
11: end for
12: end for
13: Compute mean AUC before exclusion, denote as AUCbefore
14: end for
15: for each image j in dataset do
16: Count number appearances in test dataset: Oj

17: Count number of incorrect predictions: Ej

18: Compute misclassification frequency: Fj =
Ej

Oj

19: end for
20: Flag images where Fj > θ
21: Recompute AUC after excluding flagged images, denote as AUCafter
22: Compute improvement: ∆AUC = AUCafter −AUCbefore
23: if ∆AUC < κ then
24: Decrease θ by 0.01
25: Run the function again
26: end if

In addition to misclassification frequency, we employ Grad-CAM technique to explore the
underlying causes. Grad-CAM is applied to visualize the regions influencing model predictions.
We use Grad-CAM to assess whether models attend to clinically relevant features, as opposed
to artefactual or background regions. This method enables the identification of cases where
the model focuses on artifacts or irrelevant structures, which can compromise diagnostic reli-
ability. Highly misclassified samples are further analyzed through experienced diagnostician
re-inspection to identify potential sources of error, including annotation ambiguity, atypical
histopathology or suboptimal image quality. This comparison allows for a systematic assess-
ment of whether model failures are attributable to model limitations or underlying data issues.

4. Persistent Misclassification Analysis
Through a systematic analysis across cross-validation iterations and 4 CNN architectures, we
identified a subset of 25 images that were consistently misclassified with high frequency. These
images, which exhibited misclassification rates exceeding 90%, were labeled as persistently
misclassified cases. To assess their impact on overall model performance, we conducted an
experiment in which these problematic samples were excluded from the training process. The
exclusion resulted in a measurable improvement in model performance. Figure 1 illustrates the
mean AUC of 100 iterations for CNN architectures (ResNet152, DenseNet121, cnn1 and cnn2)
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as a function of the number of excluded images identified as harmful. The exclusion of system-
atically misclassified images results in a consistent improvement in model performance across
all architectures. DenseNet121 and ResNet152, which achieved the highest baseline AUC val-
ues, exhibited the most significant gains, reaching approximately 0.87 and 0.865 respectively.
Although cnn1 and cnn2 demonstrated performance improvements, their final AUC values re-
mained lower relative to the more advanced models.

Fig. 1. AUC improvement by excluding persistently misclassified images

Table 2 summarizes the most common features identified in the misleading images. We
identify these features in order to verify how often they are present in the dataset and in the train
dataset. The presence of rare features may explain that the image containing this feature is often
misclassified. The descriptions of individual thyroid nodules were, as previously mentioned,
performed manually by an experienced radiologist. The results demonstrate that these images
are characterized by features that are relatively rare within the overall dataset and sometimes
even less common within the training dataset.

Two distinct groups of uncommon features were identified. The first group corresponds to
rare histological types of thyroid cancer, including follicular thyroid carcinoma (FTC), follicular
tumor of uncertain malignant potential (FTUMP), nodular overgrowth, Hurthle cell carcinoma
and medullary thyroid carcinoma (MTC). These cancer types are infrequent in clinical prac-
tice and thus underrepresented in the dataset. The majority of malignant nodules in the dataset
are papillary thyroid carcinoma (74% of all malignant nodules). These rare cancer types are
markedly underrepresented in the dataset, consistent with their low incidence in clinical prac-
tice. Their scarcity within the training set limits the model’s ability to generalize to such cases.
Furthermore, the analysis suggests that these rare cancers exhibit imaging characteristics that
differ significantly from PTC, which dominates the malignant cases in the dataset. This distinc-
tion may contribute to the observed misclassifications.

The second group covers US characteristics of thyroid nodules, taking into account features
related to shape, echogenicity, calcification, halo, etc. In addition, the radiological description
includes inflammation of the lymph nodes and the thyroid gland itself. The low frequency of
these features further suggests that their under-representation may contribute to the difficulty in
correct model classification. The analysis of features associated with harmful images is consis-
tent with clinical expectations. For example, the presence of thyroid disorders, such as chronic
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Table 2. US feature occurrence grouped by type with summarized number of images

Group Feature [%] of dataset [%] of train dataset Images

Rare cancer type

FTC 5% 3% 2
FTUMP 6% 6% 1
Nodular overgrowth 15% 12% 4
Hurthle 3% 2% 1
MTC 5% 2% 3
Total 11

US features

Isoechoic 18% 19% 1
Smooth margins 40% 39% 1
Halo 5% 4% 1
Round shape 2% 2% 3
Isthmus 5% 5% 1
Capsular invasion 2% 1% 1
Pat. lymph nodes 8% 7% 3
Macrocalcifications 13% 12% 1
Thyroid disorder 26% 24% 2
Total 14

lymphocytosis thyroiditis (Hashimoto’s thyroiditis), significantly impairs the ability to accu-
rately identify malignancy in ultrasound images [3].

The conclusions were drawn following in-depth manual radiological assessment of each
ultrasound image. Such detailed evaluation is challenging or even impossible when working
with multiple models and large volumes of US images. Therefore, performing a persistent
misclassification analysis is essential to systematically identify patterns of recurrent errors.

In the second stage of the analysis, Grad-CAM was applied to verify how individual CNN
models focus on specific image areas. This approach allows for the assessment of whether the
models attend to clinically relevant regions, thereby providing insight into model behavior and
the reliability of predictions. Moreover, this analysis can be performed automatically in each
cross-validation iteration, without the need for manual work or expert evaluation.

Figure 2 shows examples of misleading images of thyroid nodules. Images on the left side
are the baseline images (these images were fed into models and classified). Images on the right
are baseline images overlaid with a Grad-CAM heatmap derived from the final convolutional
layer of the CNN model. The heatmap 2b highlights regions the network considers important
for its classification. In this case, the model wrongly focuses on image artifacts rather than on
the nodule itself. These artifacts, visible as small concentrated bright spots, are unrelated to
pathological structures and suggest poor feature localization, which leads to an incorrect classi-
fication. The heatmap 2d shows that the model fails to accurately detect the shape and borders
of the nodule. Instead, the model’s attention is dispersed across surrounding tissue or irrelevant
structures. This lack of focus on the lesion boundaries contributes directly to misclassifica-
tion. Similar behavior can be observed on heatmap 2f where the dark image caused difficulty in
identifying nodule boundaries.

In turn, Figure 3 presents the correct classification of the thyroid nodules. Grad-CAM visu-
alizations reveal that the models concentrated their attention on specific morphological features
within the nodules, particularly areas of altered echotexture and internal irregularities. This fo-
cused activation (heatmaps 3b, 3d and 3f)suggests that the networks learned clinically relevant
features, rather than relying on artefactual patterns.
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(a) Base image (b) Grad-CAM heatmap for cnn1

(c) Base image (d) Grad-CAM heatmap for DenseNet

(e) Base image (f) Grad-CAM heatmap for ResNet

Fig. 2. Example of misclassified images: base US image (left) and Grad-CAM heatmap (right)
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(a) Base image (b) Grad-CAM heatmap for DenseNet

(c) Base image (d) Grad-CAM heatmap for ResNet

(e) Base image (f) Grad-CAM heatmap for cnn2

Fig. 3. Example of properly classified images: base US image (left) and Grad-CAM heatmap (right)
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5. Summary
We propose the concept of persistent misclassification analysis as a structured diagnostic tool
during CNN training for medical image analysis. Using the algorithm we identified persistently
misclassified samples. These were confirmed by experienced radiologists and validated using
Grad-CAM visualization. The models consistently failed on these cases across different archi-
tectures, indicating that the observed errors were not incidental but reflected broader limitations
in data representation and model learning. Grad-CAM analysis revealed that the networks often
focused on non-diagnostic regions, such as image artifacts or surrounding tissue, rather than the
lesion itself.

To characterize these misleading cases further, we examined low-level US features. The
analysis shows that these images contained features that were either rare or poorly represented
in the training set, limiting the models’ ability to generalize. Also, the types of malignant thyroid
cancer that were misclassified were rare clinical events, underrepresented in the dataset.

This analysis is important for two key reasons. First, model auditing: average metrics such
as accuracy, AUC and F1-score can obscure critical failure cases that persist across experimental
variations. Second, dataset quality assessment: systematically misclassified images may indi-
cate labeling errors, low-quality US scans or feature representations not well captured by the
models.

Our findings have practical implications for model development process. Persistent mis-
classification analysis can serve as an early diagnostic step in the training process, helping to
identify problematic data. Moreover, Grad-CAM-based interpretability supports error auditing
by allowing practitioners to assess whether model decisions align with known diagnostic crite-
ria.

This study is limited by the scope of the dataset, which, while well-curated, is relatively
small and imbalanced in terms of cancer type representation and US features representation.
Rare cancer types such as MTC or Hurthle cell carcinoma were underrepresented, which con-
strained the model’s ability to learn their imaging characteristics.

Future work should explore systematic integration of persistent misclassification analysis
into CNN training workflows, possibly through automated detection and targeted data exclu-
sion. The results of Grad-CAM analysis can be automatically run to flag images deemed to be
misleading.
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