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Abstract 

This paper examines the evolution and limitations of traditional acceptance models, notably 

the Technology Acceptance Model (TAM) and the Unified Theory of Acceptance and Use 

of Technology (UTAUT). These models have been valuable frameworks for IS researchers; 

however, their limited explanatory power and rigid methodology have constrained their 

applicability in practical business contexts. To address this challenge, we propose the 

Heterogeneous Technology Acceptance Model (H-TAM), a practitioner-oriented 

framework that leverages established IS theory for real-world market and product research 

applications. Central to this framework are Impact Scores, which quantify a product’s 

relative performance on technology acceptance variables compared to market benchmarks 

and competitors. We use simulated data to illustrate how H-TAM captures differences in 

user acceptance across technology products. The Impact Scores can then be used to inform 

practitioner decision-making in market analysis and product development. This framework 

advances the practical utility of technology acceptance theory and offers a foundation for 

more context-sensitive research and applications. 

Keywords: Technology Acceptance Model (TAM), Unified Theory of Acceptance and 

Use of Technology (UTAUT), market research in technology, business research  

1. Introduction 

Technology acceptance is a concept in information science that explains how and why 

users adopt or reject technological innovations. The study of technology acceptance draws 

from multiple disciplines, including information systems, human-computer interaction, 

product design, management and economics [5, 18, 31]. Its primary goal is to identify the 

factors that influence technology adoption. However, interest in the field has recently 

declined due to criticism of models like TAM and UTAUT, which, despite their theoretical 

contributions, often fail to predict real-world user behavior and lack generalizability across 

contexts [27, 31]. Scholars also note a sense of theoretical saturation, where further 

refinements offer diminishing theoretical returns [4, 25, 24]. 

We argue that this decline stems from viewing technology acceptance as a static 

concept. Reconceptualizing acceptance as a dynamic, context-dependent phenomenon can 

restore the field’s relevance. Instead of multiplying constructs and models, scholars need 

tools that make existing models sensitive to contextual heterogeneity and, in turn, useful 

for market research and product design. 

This study introduces the Heterogeneous Technology Acceptance Model (H-TAM), a 

multilevel framework that estimates how predictor effects vary across usage contexts. H-

TAM addresses three questions that earlier acceptance studies overlook: 

 

RQ1: Do acceptance predictors exhibit significant cross-context variation? 

RQ2: What does this heterogeneity reveal about the nature of technology acceptance 

as a context-dependent phenomenon? 
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RQ3: How can these variations be translated into business and economic insights? 

 

Using a simulated market-research scenario, we demonstrate that H-TAM answers these 

questions and generates new insights absent from traditional, context-agnostic acceptance 

models. 

 

2. Literature Review 

2.1. Historical Context 

The origins of technology acceptance research trace back to Ajzen’s Theory of Reasoned 

Action (TRA) and Theory of Planned Behavior (TPB) [2, 3]. These theories laid the 

foundation for modeling the relationship between attitude and technology use. A more 

technology-specific approach emerged with Davis’s Technology Acceptance Model 

(TAM), which identified Perceived Usefulness (PU) and Perceived Ease of Use (EU) as 

key predictors of user acceptance [13]. TAM’s generality allowed broad application across 

various technologies, establishing it as a foundational model. 

As technologies grew more complex, refinements to TAM emerged, leading to multiple 

extended models [1, 4, 14, 35]. To unify these developments, the Unified Theory of 

Acceptance and Use of Technology (UTAUT) was proposed, integrating key constructs 

such as Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating 

Conditions [36]. Although UTAUT was designed to unify the fragmented landscape of 

acceptance models, the field still continued its pattern of refinement and extension. This 

trend shifted attention from practical applications, which UTAUT was meant to facilitate, 

toward a continuous cycle of theoretical model-building, resulting in numerous TAM+ and 

UTAUT+ variants [4]. Consequently, the practical relevance of technology acceptance 

research was being overshadowed by an emphasis on theoretical perfection. 

2.2. Practical Applications Of Technology Acceptance Research 

This theoretical proliferation has distanced the field from its original purpose. Reflecting 

on Davis’s definition of technology acceptance as the willingness of users to accept and 

use available systems [13], it becomes clear that research has mainly focused on expanding 

predictors like Perceived Usefulness (PU). However, we must critically assess what 

practical application arises from knowing that factors such as PU are significant predictors 

of a user’s willingness. Does this knowledge extend beyond the tautological observation 

that technologies perceived as useful are used by users [4]. This conceptualization risks 

reducing technology acceptance to a statement of the obvious, albeit articulated with a 

more sophisticated vocabulary. The value of technology acceptance research, therefore, 

should be measured not just by its theoretical sophistication but by its capacity to address 

real world problems. Criticism of the limited practical relevance of technology acceptance 

research is well-established [4, 24, 27, 28, 31, 33]. In response to these critiques, there has 

been a shift towards more practically oriented applications of technology acceptance 

frameworks. Recent efforts, like applying TAM to product design, identifying user 

barriers, and integrating TAM variables into SWOT analyses, show progress in this 

direction [12, 30, 31]. Nevertheless, a persistent obstacle remains: the false assumption that 

technology acceptance models are fixed and unchanging. 

2.3. The Fixed Assumption 

The fixed assumption suggests that once predictors like Perceived Usefulness (PU) are 

repeatedly validated, their role is fully understood, making further research unnecessary 

unless new variables are introduced [9, 17, 19]. However, this assumption ignores the 

variability in technology acceptance and its predictors. The problem is not in the 

significance of a predictor’s effect, but in its effect size. Effect size refers to the magnitude 

of the relationship between a predictor and an outcome. It quantifies the practical 

significance of a finding [16]. It is not merely whether a predictor is statistically significant, 

but how strongly it influences the outcome that matters [1]. Recognizing this undermines 

the fixed perspective and underscores the need to explore variability in technology 
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acceptance. 

For instance, a study on e-learning software acceptance [32] showed that while both 

academic and elementary school teachers valued Performance and Effort Expectancy, the 

effect sizes differed: academic teachers prioritized functionality, while school teachers 

valued ease of use. Such differences offer practical insights for fields like product design 

and market research. Focusing on heterogeneity in predictor effect sizes across contexts 

can yield more meaningful findings beyond theoretical model validation. 

2.4. Evidence For Heterogeneity In Technology Acceptance Models 

Heterogeneity in technology acceptance predictors has been documented through two main 

research approaches: comparative studies and meta-analyses. Comparative studies 

examine how acceptance models perform across different contexts and consistently 

demonstrate that significant differences in effect sizes exist across settings [23, 31, 32]. 

For example, Facebook and Twitter differ on relevant model attributes, yet treating them 

as a single social media category creates misleading impressions of uniform predictor 

significance across platforms [23]. Similarly, meta-analyses of technology acceptance 

research consistently validate core predictors like Perceived Usefulness and Ease of Use 

as significant, yet they also reveal significant variability in effect sizes between different 

contexts [6, 15, 22]. This demonstrates that, while some factors are universally important, 

their influence on user behavior varies considerably across contexts, challenging the fixed 

assumption. 

 

3. Utilizing Model Heterogeneity 

Comparative studies emerged as a potent approach to derive value from the heterogeneity 

in effect sizes. These studies involve identifying different contexts where acceptance may 

vary - such as distinct user groups or contrasting IT products. The aim is to compare the 

effect sizes of model parameters between these contexts. While parameters are usually 

significant across contexts, their effect sizes most often differ [31]. In comparing 

technologies, parameter effect sizes can inform market analyses, like SWOT analysis, 

where technology acceptance variables highlight comparative advantages [12]. For 

instance, a study might reveal Facebook’s comparative advantage in user immersion over 

Twitter, guiding developers in prioritizing this feature [23]. When developers know that 

improving one feature will have a larger effect in their specific context than improving 

other features, they can allocate resources more strategically. This context-sensitive 

approach transforms abstract theoretical constructs into concrete business strategy. 

3.1. Investigating Differences In Effect Sizes: Methods And Considerations 

Investigating the difference between model parameters and their effect sizes is a critical 

aspect of comparative technology acceptance research. We compare the effect sizes across 

different contexts, as this can reveal competitive advantages of various technology 

products. This process entails inferring whether the differences in effect sizes, such as those 

in Perceived Usefulness, across various contexts, are substantial enough to be considered 

meaningful and not merely the result of random variation.  

Inferring the significance of the difference in effect sizes between two parameters is 

more complex than assessing the significance of a single parameter [11]. Initially, model 

specification must be considered. Variations in specifications, such as differing sets of 

predictors or interaction terms, can influence a parameter’s effect size. To ensure 

meaningful comparisons, the model specifications being compared must align. Yet, even 

within the same model, the underlying assumptions, such as normality of residuals and 

homoscedasticity, must hold true in both contexts; any violation can compromise the 

reliability of the estimates and their comparisons. If the assumptions are satisfied, a 

common method for testing coefficient differences is the Z-test, where a calculated Z-score 

is used to derive a p-value from the standard normal distribution [11]. A p-value below a 

typical threshold (e.g., 0.05) indicates statistical significance in the difference. In scenarios 

where pooling data is more feasible, introducing a context indicator variable and an 
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interaction term between this indicator and the independent variable can also be effective. 

The interaction coefficient then tests for differences in slopes between contexts. In cases 

where Z-test assumptions are not fully met or the structural model is complex, 

bootstrapping might offer a robust alternative. 

For complex models, where pooling is not feasible, structural invariance testing is a 

comprehensive method to investigate parameter differences between contexts [26]. 

However, extending comparisons to three or more groups leads to the statistical issue of 

multiple tests. Adjusting for multiple comparisons is an appropriate solution, but it 

increases p-value thresholds and reduces sensitivity of tests. While structural invariance 

analysis and bootstrapping can assist in multiple context comparisons, their usefulness 

decreases with increasing number of groups (exceeding ten). 

3.2. Mixed-effects Models as a Solution for Context Variability Inference 

The challenges presented by traditional methods of inferring the significance of effect size 

differences across contexts can be circumvented by employing mixed-effects models. The 

mixed-effect models handle the variance in model parameters between contexts by 

introducing random effect parameters [21]. This approach is suitable when dealing with 

many groups (more than ten), as it allows for the estimation of variance parameters that 

capture the heterogeneity across different contexts. Mixed-effects models provide a tool 

for structured analysis, accommodating the variability among context-specific estimates 

without the restrictive assumptions of homogeneity required by conventional methods. In 

the subsequent section, we will discuss how mixed-effects models can be conceptualized 

as a new framework for technology acceptance research.  

 

4. The Heterogeneous Technology Acceptance Model (H-TAM) 

The Heterogeneous Technology Acceptance Model (H-TAM) represents a new 

advancement from traditional Technology Acceptance Model (TAM) and Unified Theory 

of Acceptance and Use of Technology (UTAUT). Rather than proposing yet another model 

with predetermined variables, H-TAM introduces a flexible framework. Unlike traditional 

acceptance models that prescribe specific variables (such as PU or EU), H-TAM operates 

as a meta-framework within which any acceptance model can be specified and analyzed. 

The framework’s true innovation lies not in identifying new predictors of technology 

acceptance, but in systematically quantifying how the effects of any chosen predictors 

differ across contexts. Whether researchers include traditional TAM/UTAUT variables or 

context-specific factors like price, immersive experience, or cultural influences, H-TAM’s 

primary contribution is its ability to capture and quantify the heterogeneity in these effects 

across different user groups, technologies, or environments [25]. This context-centric 

approach transforms how we understand technology acceptance. Traditional models 

implicitly assume that predictor effects are fixed across contexts. H-TAM explicitly 

assumes that predictor effects vary across contexts and these context-driven variations are 

its central feature. This focus shift enables researchers and practitioners to move beyond 

questions of „what predicts acceptance?” to inquiries about „how does acceptance changes 

across different contexts?” 

These basic assumptions of H-TAM can be expressed in a general model equation as 

follows: 

 
𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 = (𝛽0 + 𝑢0𝑖) + ∑ (𝛽𝑘 + 𝑢𝑘𝑖) × 𝑋𝑘𝑖

𝑝
𝑘=1 + 𝜖𝑖                               (1) 

 

Where: 

• 𝛽0 is the intercept for the model, 

• 𝑢0𝑖 is the context effect for the intercept in context i, 

• 𝛽𝑘  are the fixed effect coefficients for predictor k (averaged across all contexts), 

•  𝑢𝑘𝑖 are the context effects for predictor k in context i, 
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• 𝑋𝑘𝑖 represents the 𝑘𝑡ℎ predictor in context i (this can be any predictor - whether 

traditional TAM/UTAUT variables like Perceived Usefulness, or context-specific 

variables like price, cultural factors, etc.), 

• 𝑝 is the number of predictors (attributes), 

• 𝜖𝑖 is the error term for context i. 

 

The predictors 𝑋𝑘𝑖  can represent any theoretically or empirically justified variables, 

including traditional TAM variables (Perceived Usefulness, Perceived Ease of Use), 

UTAUT variables (Performance Expectancy, Effort Expectancy, Social Influence), 

context-specific factors (price, cultural variables, technology characteristics), user 

demographics, or any other relevant predictors.  

The H-TAM equation is a systematic decomposition of all predictor effects into fixed 

effects and context effects. The fixed effects (𝛽𝑘) correspond to the average influence of 

predictors across all contexts (similar to traditional model coefficients). The context effects 

(𝑢𝑘𝑖) quantify the deviation of these influences within specific contexts. Importantly, H-

TAM does not prescribe which variables researchers should include. Instead, it provides a 

framework to understand how any chosen variables perform differently across contexts. 

This flexibility means that H-TAM is not competing with existing models by proposing 

alternative predictors, but rather offering a new lens through which any technology 

acceptance model can be examined. For robust estimation of these context effects, 

sufficient context units (ideally ten or more) are required. When context units are limited, 

alternative methodologies such as structural invariance analysis may be employed (see 

Investigating Differences In Effect Sizes: Methods And Considerations section). 

The estimation of H-TAM’s parameters is based on mixed-effect modeling. These 

models offer the advantage of fitting the H-TAM equation directly to the data. These 

models can be estimated using Markov Chain Monte Carlo algorithms [7]. MCMC 

provides a statistical machinery necessary to capture the complex heterogeneity that H-

TAM seeks to estimate. For more detailed discussion on model fitting, see the 

Supplementary Materials. 

 

5. Simulation study 

To demonstrate H-TAM in practice, we simulate an example that can be applied to any 

technology market with competing products.  

Consider a scenario where we are a market research firm aiming to study technology 

acceptance across competing products. The market consists of multiple offerings designed 

to fulfill similar purposes (e.g., e-learning software facilitating online education or 

streaming services providing entertainment content). The user’s decision to adopt a 

particular technology (acceptance) is determined by core predictors of technology 

acceptance, such as Perceived Usefulness (PU) or Ease of Use (EU), but also by context-

specific factors. These context-specific predictors can vary by domain (for e-learning 

software, they might include Price Attractiveness (PA) or Integration (Int) and for 

streaming services, they might include Content Library (CL) etc.). From the H-TAM, we 

can expect the effect size of these predictors to vary among different products within each 

category, expressed through context effect coefficients. H-TAM accounts for this 

variability and allows us to analyze if certain products have advantages over others in their 

respective markets. 

The fixed effect for the model parameter can be conceptualized as the expected market 

trend, representing an average effect across all products. A substantial context effect then 

indicates that individual effect sizes of acceptance predictors significantly deviate from 

this expected market trend. Products with effect sizes above the market trend can be 

considered as having market advantage. For instance, if Product A has a PU effect 

substantially exceeding the market trend, it implies that its users highly value its usefulness. 

Even minor improvements in its usefulness could result in substantial increases in 

acceptance. Conversely, Product B might have a PU effect size below market trend, 

indicating underperformance and a lack of translation of its usefulness into user 
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acceptance. In this context, Product A holds a competitive edge over Product B, as its 

usefulness has a stronger correlation with higher user acceptance. 

Besides the effect sizes of predictors, there is a second metric - the predictor mean, 

which has been overlooked in technology acceptance research. This metric is important 

when applying H-TAM to market research. The predictor mean indicates the current extent 

to which a technology product meets users’ expectations. For example, if a product has a 

higher PU mean than the market PU average, it suggests that users perceive it as more 

useful compared to other market options. Furthermore, if PU has a large effect size, it 

indicates that the product is not only seen as more useful by users compared to its market 

counterparts, but that this perception significantly contributes to increased acceptance. 

These two metrics, when used together, provide measures for analyzing the 

competitiveness of the technology market using H-TAM. We will now illustrate this 

analysis with simulated data. 

5.1. Data Simulation 

In our simulation, we aimed to replicate typical patterns observed in technology acceptance 

research rather than generate specific model values. Technology acceptance studies often 

use psychometric questionnaires with Likert scales (1-7) and exhibit a skew toward higher 

rating. Traditionally designed for fixed-effect models like TAM, these studies usually 

analyze a single product. In contrast, our mixed-effect approach required a nested structure 

with multiple products and their users. 

We simulated 800 users evaluating 20 products, totaling 16,000 observations. This can 

be interpreted as either different groups of 800 users per product or one group assessing all 

products. This approach reflects the data structure commonly used in previous technology 

acceptance research [23, 32]. For simplicity, we assumed each participant evaluated all 

products, without missing data. 

Our H-TAM simulation included two core predictors (Perceived Usefulness and Ease 

of Use) and two context-specific predictors (Price Attractiveness and Integration). 

Responses were generated via truncated normal distributions (1-7 range) with mean shifts 

to reflect typical positive skewness. We generated fixed and random effects using an 

artificial covariance structure designed to ensure positive product-specific effects. 

Finally, we simulated the Behavioral Intention (BI) variable, representing user 

willingness to use a product and fitted a mixed-effect model using the brms package in R 

[7]. Full simulation details and code are provided in the Supplementary Materials. 

 

6. Results 

The results of the H-TAM estimation are detailed in Table 1. Our analysis reveals the 

anticipated outcomes: all fixed effects are significant. The core TAM predictors - Perceived 

Usefulness (PU) and Ease of Use (EU) - have the largest fixed effect sizes among all 

predictors. This finding reinforces a well-established conclusion in technology acceptance 

research: products perceived as useful and easy to use are more likely to be accepted by 

users. In addition to these core predictors, the model also included two context-specific 

predictors: Price Attractiveness and Integration. Both showed significant fixed effects. 

However, their effect sizes are smaller than those of PU and EU, indicating a lesser, yet 

still important, impact on users’ willingness to use a product. 

The fixed effects are typical of those found in technology acceptance studies. The 

innovation of H-TAM is highlighted in context effects. The second part of Table 1 indicates 

that all context effect coefficients, along with their confidence intervals, exceed zero. This 

indicates significant variability in the effect sizes of fixed coefficients across different 

products. The greater the context effect, the more pronounced this variability becomes 

between products. PU exhibits the largest context effect of all variables. It indicates that 

PU’s impact on Behavioral Intention (BI) varies substantially across different products. 

Conversely, the context effect for Price Attractiveness is the smallest, indicating that 

product-specific coefficients for Price Attractiveness are relatively consistent with the 

fixed effect coefficient, i.e., there is less variance.  
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Table 1. H-TAM Model Estimation Results 

Parameters Estimate SE 95% Bayesian CI 

LL UL 

Fixed effects     
Intercept 2.21 .85 .51 3.85 

Perceived Usefulness  1.94 .18 1.56 2.30 

Ease of Use 1.31 .09 1.13 1.47 
Price Attractiveness  .91 .04 .83 .98 

Integration .83 .05 .74 .92 

Context effects     
Intercept 3.84 .69 2.75 5.44 

Perceived Usefulness  .85 .16 .61 1.21 

Ease of Use .39 .07 .27 .56 
Price Attractiveness  .17 .03 .11 .24 

Integration .21 .04 .14 .30 

 

H-TAM’s analytical capabilities extend to examining product-specific effects and 

means, which represent the model’s estimates for individual products. Table 2 showcases 

these estimates for Perceived Usefulness (PU) and Ease of Use (EU), the two predictors 

with the largest context effect. From Table 2, we can see that product 18 demonstrates the 

largest effect size for PU. It indicates that for this product, usefulness has a considerably 

stronger impact on user acceptance than is expected based on the fixed effect and observed 

for other products. However, product 18 also ranks lower in actual usefulness as assessed 

by its users, falling below the grand mean usefulness for all products. This observation 

suggests that although the product usefulness is extremely important for users, the product 

itself has not yet fully met users’ expectations, highlighting an opportunity for 

improvement. Consequently, we can expect that improvements in product 18 usefulness 

will greatly increase product acceptance. Product 10 also shows a relatively large PU effect 

size, but unlike product 18, users evaluate it as more useful than other products on the 

market. This indicates that product 10 not only has a significant advantage in Perceived 

Usefulness but also effectively leverages this feature to gain user acceptance. Its high 

usefulness directly and strongly correlates with higher user acceptance, demonstrating a 

successful alignment of product features with user expectations. 

 
Table 2. H-TAM Product-Specific Effects, Means, and Impact Scores for PU and EU predictors 

Product  Product-specific 

 effect  

Product-specific  

mean 

Product impact  

score 

PU EU PU EU PU EU 

1 1.81 1.04† 4.99 2.74† .47 −1.87† 

2 1.42 1.26 3.84  3.01 −1.24  −.95 
3 2.25 1.05 5.34 3.48 1.41 −.91 

4 1.30† 1.38 5.52* 3.43 .52 −.13 

5 1.45 1.11 4.06 5.42* −1.05 1.68* 

6 1.62 1.62* 3.94 3.82 −1.00† .97 

7 2.47 1.46 4.66 3.99 .86 .81 

8 1.34† 1.04† 3.59† 4.87* −1.77† .81 
9 1.40 1.42 3.84 3.79 −1.40 .42 

10 2.76* 2.42* 5.22 3.32 1.86* 2.41* 

11 1.76 1.07 3.65† 2.78† −1.19 −1.73† 

12 2.63* 1.11 5.07 4.94* 1.54 1.08 

13 1.31† 1.22 3.79 3.60 −1.56† −.31 

14 1.50 1.45 4.40 3.25 −.59 −.17 
15 2.50 1.55* 5.39* 4.21 1.76 1.28* 

16 2.07 1.50 3.76 2.97 −.69† −.38 

17 1.34 1.09 3.63† 2.94† −1.71† −1.86† 

18 4.25* 1.36 3.85 2.87 1.98* −.88 

19 1.53 1.05 3.99 4.59 −1.07 .50 

20 2.19 0.98† 6.57* 3.56 2.82* −.98 

Note. Product-specific effect represents the magnitude of influence that PU and EU have on user acceptance for each product. 
Product-specific mean indicates the average user rating for PU and EU per product, and the product Impact Score combines 

these two metrics to provide an overall assessment of the product’s performance against market trends. Asterisks (*) identify 

the top three performing products in terms of product-specific effects or product Impact Scores. Daggers (†) highlight the 
three products with the lowest scores, signaling areas for potential improvement to meet market standards. 

 

These conclusions are further supported by Figure 1, which graphically displays all 

products in terms of their product-specific effects (plotted on the x-axis) and product-
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specific means (y-axis). The vertical dotted line in the figure represents the fixed effect and 

serves as a benchmark for the average effect a variable is expected to have on Behavioral 

Intention (BI) in the market. Products positioned to the right of the vertical line exhibit 

product-specific effects that surpass the market average, with their distance from the line 

indicating the degree of this advantage. Conversely, products on the left side are 

performing below market expectations, indicating that their features do not translate into 

acceptance as expected. Similarly, the horizontal line represents the grand mean and we 

can analogously interpret it as a market effect. Products located above or below this line 

are perceived by users as better or worse than the market average in terms of that specific 

variable. The further their position from this line, the stronger their perceived advantage or 

disadvantage. 

 

 
Fig. 1. Market Positioning of Products Based on Specific Attributes in the H-TAM Model 

 

Zooming on Figure 1a, which illustrates product-specific effects for PU, we observe 

that the vertical line represents the fixed effect from Table 1, approximately 1.95. Most 

products cluster around this value, but significant variation exists, with some products 

distant from this line. Notably, products 18 and 10, identified in Table 2 as having the 

largest effect size of PU on acceptance, stand out as being the farthest from the vertical 

line. This variation underscores the strength of the context effect, especially evident in the 

dispersion of product-specific effects along the x-axis. For PU, this range extends from a 

low of 1.31 (product 13) to a high of 4.25 (product 18). For other variables like Price 

Attractiveness and Integration, context effects are comparatively smaller, as evidenced by 

the lesser dispersion of product-specific effects around the vertical line. 

The same rationale applies to the analysis of product-specific means and the grand 

mean (horizontal line). In the case of product 20, as shown in Figure 1a, it has one of the 

highest product-specific PU means, signifying its exceptional Perceived Usefulness, above 

the market average and other products. In contrast, product 8 has the lowest product-

specific mean, indicating that users perceive it as less useful compared to market standards. 
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6.1. Impact Scores 

We can further leverage the variance in predictors and means to devise a single Impact 

Score (IS) that indicates a product’s relative position against market expectations. Impact 

Score synthesizes all metrics from the H-TAM model into a singular score. It offers 

analysts a clear metric for evaluating a product’s performance in specific attribute, such as 

Ease of Use. The mathematical concept behind the Impact Score is delineated in equation 

2. 

For each product i and each predictor k, the product Impact Score 𝐼𝑆𝑖,𝑗 is calculated as: 

𝐼𝑆𝑖,𝑗 = (
𝑤𝑖𝑘−𝛽𝑘

𝑚𝑎𝑟𝑘𝑒𝑡

𝑢𝑘
𝑤𝑚𝑎𝑟𝑘𝑒𝑡 ) + (

𝑚𝑖𝑘−𝑀𝑘
𝑚𝑎𝑟𝑘𝑒𝑡

𝜎𝑘
𝑀𝑚𝑎𝑟𝑘𝑒𝑡 )                                      (2) 

Where: 

• 𝑤𝑖𝑘  is the product-specific effect of predictor k for product i, 

• 𝑚𝑖𝑘  is the product-specific mean of predictor k for product i, 

• 𝛽𝑘
𝑚𝑎𝑟𝑘𝑒𝑡 and 𝑀𝑘

𝑚𝑎𝑟𝑘𝑒𝑡are the fixed effect and grand mean for predictor k, 

respectively, 

• 𝑢𝑘
𝑚𝑎𝑟𝑘𝑒𝑡 and 𝜎𝑘

𝑚𝑎𝑟𝑘𝑒𝑡are the context effect and the standard deviation of the grand 

mean of predictor k, respectively. 

 

This equation has two parts: 

1. Effect Impact: (
𝑤𝑖𝑘−𝛽𝑘

𝑚𝑎𝑟𝑘𝑒𝑡

𝑢𝑘
𝑤𝑚𝑎𝑟𝑘𝑒𝑡 ) calculates the deviation of the product-specific 

effect i for a predictor k from the fixed effect (effect expected by the market) 

scaled by the context effect. 

2. Mean Impact: (
𝑚𝑖𝑘−𝑀𝑘

𝑚𝑎𝑟𝑘𝑒𝑡

𝜎𝑘
𝑀𝑚𝑎𝑟𝑘𝑒𝑡 ) calculates the deviation of the product-specific 

mean i for a predictor k from the grand mean (market mean) scaled by the grand 

standard deviation. 

 

Impact scores are based on the statistical concept of standard scores. Standard scores 

measure how far a data point is from a central value, normalized by a scale factor. Our 

definition of Impact Scores includes standard scores for both the effect size (termed Effect 

Impact) and product means (termed Mean Effect). Each standard score reflects the relative 

position of each product within the market, based on the selected metric (central value) and 

its variability (scale factor). We assume that these two scores, Effect and Mean Impact, 

hold equal significance in determining a product’s competitiveness. It implies that the 

influence of the model predictor on acceptance and the average user perception (its mean) 

are both equally important in determining the product’s market position. This equal 

weighting is quantitatively represented in Equation 2, where the Impact Score is calculated 

as the sum of these two scores. Given this operationalization, a high positive 𝐼𝑆𝑖,𝑘 indicates 

that the product i significantly surpasses market trends in the attribute k, considering both 

its product-specific effect and mean. Conversely, a high negative score indicates that the 

product falls short of market trends. A 𝐼𝑆𝑖,𝑘 = 0 means that the product’s feature is 

perfectly aligned with the market.  

The final two columns of Table 2 display the calculated Impact scores for Perceived 

Usefulness (PU) and Ease of Use (EU). For example, product 10 achieves one of the 

highest Impact Scores in both features (𝐼𝑆10,𝑃𝑈 = 1.86 and 𝐼𝑆10,𝐸𝑈 = 2.41). This finding 

aligns with observations from Figures 1a and 1b, where Product 10’s metrics consistently 

exceed market expectations, except for the product-specific mean for EU. However, its 

strong product-specific effect in EU compensates for this, resulting in the highest Impact 

Score in this category. The 𝐼𝑆10,𝐸𝑈 = 2.41 indicates that users highly value the ease of use 

of product 10, and this attribute significantly influences their acceptance. This suggests 

that Product 10 has a competitive advantage in Ease of Use and that this feature is critical 

to its market success. 
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In contrast, product 17 exhibits some of the lowest (negative) Impact Scores for PU 

and EU among all products (𝐼𝑆17,𝑃𝑈 = −1.71 and 𝐼𝑆17,𝐸𝑈 = −1.86), indicating 

underperformance compared to other market products. Analysis of Figures 1a and 1b 

reveals product 17’s positioning in the fourth quadrant for both PU and EU, suggesting 

that users perceive it as less useful and easy to use than competing products. This lower 

Perceived Usefulness and Ease of Use have less impact on user acceptance. However, this 

does not automatically imply market disadvantage. Figure 1c shows that Price 

Attractiveness, product 17 has the highest Impact Score, highlighting its competitive 

advantage in this feature. 

Interpreting Impact Scores requires caution, as they depend on the acceptance model 

specified in H-TAM. Analysts must carefully select features for analysis, as these choices 

will guide conclusions about a product’s strengths and weaknesses. While core technology 

acceptance variables like PU and EU are generally reliable for analyzing IT products, our 

model shows that focusing solely on these may overlook context-specific variables where 

other products may excel. Therefore, analyses using our framework should thoughtfully 

include all variables deemed relevant for the studied problem. 

 

7. Discussion and further research direction 

H-TAM is designed to bridge theoretical technology acceptance models and applied 

business and market research. The IS field has developed sophisticated theory around 

technology acceptance, yet translating this theoretical knowledge into practical business 

applications has received limited attention. In this paper, we establish the foundation for 

connecting IS theory with practical implementations. Through simulation, we demonstrate 

that paying attention to context differences and heterogeneity in model effect sizes can 

reveal previously omitted insights. 

Our simulation assumes differences in effect sizes or the importance of certain 

predictors or attributes. This assumption is justified by both IS and business literature [6, 

20, 27, 31]. Technology acceptance models have proven that predictors like Perceived Ease 

of Use are consistently significant. However, the strength of their effects almost always 

differs from context to context. Different user groups might value different attributes more, 

different products might underscore different features, and different organizations have 

different technology adoption rates. In all these cases acceptance predictors will have 

varying effect sizes. These differences can be informative, and this is the core value 

proposition of H-TAM: it investigates these differences, quantifies their magnitude, and 

through Impact Scores enables identification of advantages and disadvantages. 

7.1. Applications and Generalizability 

While we have focused on H-TAM’s applicability in market research and product 

comparison, its potential extends far beyond this domain. With its flexible structure and 

focus on variability, H-TAM is useful in any applications where technology acceptance 

parameters differ across contexts. Among potential applications, we could consider cases 

where previous research has indicated variability in technology acceptance, such as: 

 

• Healthcare technology adoption [10], where H-TAM could infer context effects 

arising from differences among healthcare providers or institutions. 

• Educational technology [32, 34], which may involve assessing e-learning tool 

acceptance across schools, universities or distinct user groups, including students, 

teachers, and administrators. 

• Financial services technology [29], where H-TAM can infer how varied customer 

segments or demographics engage with fintech solutions such as mobile banking 

or digital wallets. 

• Organizational characteristics [8], where the specific characteristics of different 

organizations may significantly shape technology perception and adoption rates. 

 

H-TAM’s strength lies in its ability to infer and quantify context-effects wherever 
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context-dependent phenomena exist. This principle of generalization extends to our Impact 

Score. For instance, in examining technology adoption across various organizations, with 

these organizations serving as the context units for context-effects, the Impact Score could 

reflect each organization’s readiness or relative advantage/disadvantage in adopting the 

specified technology. The way researchers interpret this metric will pivot according to the 

specific research problem and questions they investigate. 

7.2. Future Theoretical Development 

Future research should develop a clear link between the results that H-TAM provides in 

the form of its Impact Scores and applied economics and business theory. One potential 

link that we foresee is the Importance Performance Analysis (IPA) that has been used in 

economics and management for product comparison and competitiveness analysis. Similar 

to acceptance models, IPA defines an outcome variable related to user satisfaction and 

product acceptance and uses predictors like product attributes to predict that outcome 

variable. IPA compares the strength (effect sizes) of certain predictors to determine which 

are the most important for product success. Similarly to H-TAM’s Impact Scores, IPA also 

uses both the predictors’ effect sizes and the predictors’ means to judge product 

competitiveness. IPA seems like a prime candidate for integration with H-TAM. Further 

methods like SWOT analysis are also promising candidates. 

Another further direction for H-TAM’s expansion could be the inclusion of higher-

order predictors from mixed-effect models (see Supplementary Materials for a brief review 

of higher-order predictors). These predictors aim to explain context-effects by 

incorporating features of the context units into the H-TAM equation. For example, when 

applying H-TAM to study context-effects across organizations, higher-order predictors 

could include variables like the industry sector or organization’s workforce size. These 

predictors are used to explain the variability captured by the model’s context-effects. We 

might discover that this variability arises because the private sector values ease of use more 

while government organizations give more weight to usefulness.  

 

8. Conclusions 

Technology acceptance theory has often been reduced to theoretical constructs, with 

insufficient emphasis on practical application. However, the value of a theory must be 

measured by its real-world applicability, and it is this aspect that technology acceptance 

models have often fallen short. We acknowledge technology acceptance theory’s 

contributions, yet significant work remains in bridging theory to practice. The 

preoccupation with theoretical validation and model development within the scientific 

community has, at times, overshadowed the pursuit of practical utility. 

We argue that one underlying reason for this neglect lies in the models’ traditional 

conceptualization and the implicit fixed assumption, which have constrained the 

exploration of technology acceptance as a context-varying phenomenon. Our proposed 

Heterogeneous Technology Acceptance Model - intentionally described as such, rather 

than a theory - presents a new opportunity for the research community, as it invites a shift 

in focus towards the differences in technology acceptance across diverse and 

underexplored contexts. With the introduction of H-TAM, we anticipate a resurgence of 

interest in technology acceptance research, that will bring not only theoretical but also 

practical advancements. 

 

Supplementary Materials.  

The supplementary materials accompanying this article, including the code used for 

generating the data and detailed explanations, are available at the Open Science 

Framework. This repository provides additional resources that support the findings and 

methodologies described in the article. These materials can be accessed through the 

following link: https://osf.io/w92nt/  

 

 

https://osf.io/w92nt/
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