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Abstract

The use of deep learning methods has gained momentum in the domain of survival analysis.
Different models have been proposed to handle time-to-event data. Neural networks are used to
find complex relationships between features, improving the predictive capabilities of deep learn-
ing models. When conducting experiments, one might want to reduce the number of methods
that need to be examined because of the computational resources required for model training.
Establishing families of deep learning methods that behave in a similar way might be beneficial
for such scenarios. In this paper, we establish a way to measure differences between deep learn-
ing discrete-time survival analysis models. The proposed method is based on SHAP values. We
conducted experiments for three datasets and five discrete-time survival analysis models. We
proposed a special kind of plot that helps visualize the impact of features on the model outputs
over time intervals. Based on the obtained results, we performed Friedman and Wilcoxon tests
to examine statistically significant differences between the models.

Keywords: survival analysis, discrete survival time, SHAP values, deep learning, time-dependent
discrimination index

1. Introduction
Certain problems require us to predict the times it will take for an event to occur. It could be
patient survival, machine part failure, or customer churn. Usually, we work with data samples
that are described by covariates and time. In practice, for some of the data, we might not have
an event observed. Various methods have been proposed for handling samples with incomplete
observations (censored samples). The most well-known include the Cox proportional hazards
(Cox PH) model [2]. There are various downsides to using strictly statistical methods. Most
importantly, basic models might not be able to find complex relationships between features.
The limitations stem from the model’s construction, e.g. the assumption of linear effects of
features. To overcome such issues, new approaches to solve the problem are proposed.

Recently, a growing number of deep learning methods have emerged among new models
[18]. These methods are used to analyze standard censored survival data, where time is treated
as a continuous variable and a single type of event is considered (e.g., predicting the survival
of brain cancer patients based on MRI images [20] or forecasting postoperative survival for
patients with gastric cancer [19]). Additionally, models have been proposed for predicting the
time to more than one type of event (known as competing risks data) [13], as well as discrete-
time models that divide survival time into distinct intervals, treating time as a discrete variable
and focusing on the occurrence of the event of interest within these intervals [16]. Notable
models in this area include DeepHit [13], DeepSurv [9], PMF [11], Nnet-survival [11], the
neural multi-task logistic regression model [4], or BCESurv model [12].
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The downside of deep learning is that models are usually difficult to explain. This means
that we cannot easily find the reason why a given method produced specific predictions. To
solve this problem, several tools have been proposed, including ICE [5], LIME [15] and SHAP
[14]. The SHAP values represent the impact each feature had on output values relative to the
average output values. The advantage of SHAP is that it can be applied to various models as it
does not impose restrictive limitations.

In this work, we present preliminary results of comparisons between deep learning discrete-
time survival analysis models using values derived from SHAP. It could be beneficial to con-
struct families of models for which features have similar effects on the model outputs. The
comparisons made in this work are based on the percentage contributions of the mean absolute
SHAP values of the features. For better visualization, we prepared special plots that capture
the contribution percentages with Kendall’s Tau correlation (named "arrow plots"). We per-
formed the Friedman test and the Wilcoxon signed rank test to examine statistically significant
differences between the models. The analysis was performed on three real datasets.

The rest of the work is divided into 6 sections. In Section 2 we briefly explain what survival
analysis is. Then in Section 3 we describe deep learning methods used in the domain of discrete-
time survival analysis. In Section 4 we introduce the key concepts of model explainability and
in Section 5 model performance evaluation. In Section 6, experiments are described and results
presented. We finish with Section 7, where we share the conclusions and further steps.

2. Survival analysis
Survival analysis, or time-to-event analysis [13], refers to a set of statistical methods used to
examine the time until a specific event occurs. Each data sample includes a defined start time
(the beginning of observation) and, ideally, an end time marking the event. The primary focus is
the duration between these two points. However, in real-world scenarios, either the event time
or even the start time may be unobserved, which is known as censoring.

Censoring is an important aspect of survival analysis, as it reflects incomplete observation of
the event of interest. Two primary types are typically distinguished: left-censoring, which occurs
when the event takes place before the onset of observation, and right-censoring, when the event
has not occurred by the end of the observation period. The latter is common in practice and
may result from the termination of the study before the event is observed or the loss of follow-
up. Importantly, censored observations should not be excluded from analysis, as they provide
valuable partial information on survival time and contribute meaningfully to model robustness.

In survival analysis, each data sample is typically characterized by three components: co-
variates x, time t, and a censoring indicator δ. Given a dataset with N observations, let i denote
the index of a sample. Then, each sample can be represented as (xi, ti, δi), where xi denotes the
feature vector, ti represents the observed time defined as the duration from the start of obser-
vation to either the occurrence of the event or censoring and δi ∈ {0, 1} is the event indicator,
with δi = 0 signifying that the observation was censored, and δi = 1 otherwise.

Two fundamental functions are commonly used in survival analysis [2, 18]: the survival
function and the hazard function. The survival function describes the probability of surviving
beyond time t. It is formally defined as S(t) = Pr(T > t), where T is a non-negative ran-
dom variable representing the time until the event. Intuitively, S(t) can be interpreted as the
proportion of individuals in the original population who are expected to survive beyond time t.

The hazard function λ(t) (also denoted as h(t)) characterizes the probability of the event
occurring at time t, conditional on the event not occurring up to that time. It is formally defined
as

λ(t) = lim
∆t→0

Pr(t ≤ T < t+∆t | T ≥ t)

∆t
. (1)

As ∆t approaches zero, the hazard function yields the instantaneous failure rate at time t.
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3. Deep learning discrete-time survival analysis methods
In addition to purely statistical approaches, researchers have tried to use deep learning methods
in the domain of survival analysis. The key idea behind deep learning is the use of neural
networks that are capable of finding complex relationships between the data. Machine learning
methods have been argued to often outperform statistical models when it comes to predictive
power [18].

Oftentimes, we consider the events on a discretized time scale [16]. There are several rea-
sons for dividing time into intervals. Sometimes studies are conducted in such a way that sam-
ples are gathered at specific times [17]. Apart from that, time discretization can simplify the
survival prediction problem. Existing deep learning architectures can be adapted to predict
probability mass functions or discretized hazard functions (as in [11]). In this work we will
denote the number of time intervals by J .

The PMF model [11] uses a neural network to parameterize a probability mass function
f for discrete-time data. The network has J outputs, which correspond to the number of time
intervals. The network outputs are described by φ(x) = {φ1(x), · · · , φJ(x)}, where each output
represents the value of f for a given time interval. The value of the probability mass function f
represents the chance that an event will occur at time tj . It has been noted that the probability
mass function of the PMF model is equivalent to a softmax function with φJ+1 set to 0 [11].
This would mean that the neural network has an additional output that represents a time interval
past any observed event or censoring. If we set φJ+1 to 0 then we effectively disallow the
network from predicting events past a certain time.

The LogisticHazard model [11] (also known as Nnet-survival) applies a neural network to
parametrize a hazard function λ. The network has J outputs that are transformed by a sigmoid
function. The application of the sigmoid function ensures that the output values of the network
will be in the range of (0,1). The transformed network outputs correspond to the values of hazard
function for each time interval. The resulting hazard function is given by [11]:

λ(tj |x) =
1

1 + exp[−φj(x)]
, (2)

where tj represents the j-th time interval, x is a feature vector, and φj is the j-th output of the
neural network.

DeepHit [13] is a discrete-time survival analysis model. It uses a neural network to parame-
terize a joint probability distribution function. What distinguishes DeepHit from other models is
its ability to handle data with more than one event of interest (K ≥ 1). Note that DeepHit treats
censoring as a separate type of event. The network’s architecture consists of K risk-specific sub-
networks. The subnets are connected using an additional shared network. It allows the model
to learn the relationships that are common among risks. DeepHit uses a single output softmax
layer to ensure that the model learns the joint distribution of events y [13], given by

y = [y1,1, · · · , y1,J , · · · , yK,1, · · · , yK,J ]. (3)

The N-MTLR (Neural Multi-Task Logistic Regression) was introduced in [4]. It is based on
the MTLR model [21], which uses logistic regression to approximate the survival function. To
better understand N-MTLR, one might first want to learn about MTLR. The main premise of
the MTLR method is to consider a simple classification task for each of the J time intervals. A
logistic regression model can be fitted to determine the probability of survival beyond time tj ,
given the feature vector x. The MTLR model contains J logistic regression modules, one for
each time interval. It has been noted that the outputs of the modules are not independent. The
authors of MTLR have encoded the survival times of samples as a binary survival sequence y
consisting of J elements from {0, 1} [21]. Starting from the time interval tj , the sequence is
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filled with ones. The time intervals before tj are filled with zeros. MTLR learns the joint predic-
tions of survival status by considering the probability of observing specific survival sequences.
This is done by solving an optimization problem that includes both the log-likelihood and reg-
ularization terms. The N-MTLR model introduces greater flexibility in terms of the effects of
features by using a neural network instead of the linear combination of features from MTLR.
As noted by the author of N-MTLR, the main advantage of this method is the introduction of
greater flexibility compared to MTLR.

The BCESurv model [12] stems from the concept of binary classifiers. When considering
survival analysis, one might try to fit a binary classifier for the time interval tj to determine
the samples that experience the event or not. Expanding on the idea, we might construct an
ensemble of classifiers, one for each time interval. When considering an interval tj , BCESurv
discards samples that were censored before tj . Instead of a classifier ensemble, BCESurv uses
a neural network. The network has J outputs, one for each time interval. The method estimates
the probabilities for each time interval simultaneously. The authors of the method proposed a
special loss function, based on which the model is fitted to the data.

4. Model explainability
Deep learning methods can often be perceived as a black box, meaning that we cannot easily tell
why a model has produced certain outputs for given data samples. Efforts have been made to
construct tools that might help us to understand the behavior of the models. It should be noted
that explainability is not the same as interpretability. The former tries to justify why a model has
produced certain output values without looking inside the model, while the latter concerns the
understanding of inner workings of a model and the ability to follow the process that resulted
in given output values. Several methods for model explainability have been proposed, including
the Individual Contribution Expectation (ICE) method [5], Local Interpretable Model-agnostic
Explanations (LIME) [15] and Shapley Additive Explanations SHAP values [14]. In our work,
we will focus on the last one.

The SHAP values proposed in [14] are used to explain the behavior of various machine
learning models. The method is based on Shapely values which are a game-theoretic approach
for explaining contributions among "players" who cooperate towards a certain goal. SHAP
examines the individual impact of each feature on the model’s output values. The strength of
this method lies in its ability to explain various types of deep learning models.

SHAP values are measured relative to baseline (or average) output values. This means
that we have to select a set of background samples based on which the average values will be
calculated and a set of samples for which to get the SHAP values. As a result, we get a set of
explanations. For each of the input samples, SHAP produces an impact value the feature’s value
had on the model’s output. It is possible to use SHAP on models that have multiple outputs.

An implementation of SHAP for the Python programming language is available in the shap
package. It provides all the necessary classes used for calculation and visualization purposes.
The shap package provides an implementation of Explainer class that expects a model and
background samples as input. After being initialized, a set of samples must be provided for
which to produce SHAP values. After having prepared the explanation values, one might want
to visualize them. The shap package provides several tools for plotting the data. These include
the "beeswarm" plot and the "waterfall" plot.

5. Model performance evaluation
In various situations, we might want to compare different survival analysis models with each
other. This can be done using various metrics that are specifically designed for the types of
predictions that are considered in the domain of survival analysis. The most common ones
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include the Harrel’s C-index [7], the integrated Brier score (IBS) [6], and the time-dependent
concordance index Ctd [1]. In the context of this work, Ctd will be considered.

Ctd was first introduced in [1] as a tool to examine concordance. The main premise behind
the method is to measure model’s discrimination ability in contexts where certain assumptions
are not held. The authors note that Ctd is an extension of the C-index. Ctd takes into account
the predicted survival functions of data samples. The values get aggregated over time.

The authors of Ctd define it as a weighed average of AUC values. For each time interval, the
probability of correctly predicting survival function values for sample pairs is checked. Only
pairs in which one sample experiences the event and the other does not are considered. The
AUC of Ctd is defined by [1]:

AUC(t(k)) = Pr{S(t(k)|Xi(t)) < S(t(k)|Xj(t))|Di(t(k)) = 1&Dj(t(k)) = 0}, (4)

where Da(t(k)) is an indicator representing whether a sample experienced the event at time t(k),
& represents an intersection operator, and S(t(k)|Xa(t)) is a survival function value at time
t(k) given time dependent covariates Xa(t(k)) of a sample. Based on the AUC values, we can
calculate the value of Ctd for the whole time range using formula given in [1]:

Ctd =
ΣK
k=1AUC(t(k)) · w(t(k))

ΣK
k=0w(t(k))

. (5)

The weight associated with the given time interval is equal to the probability of selecting a pair
of samples where one experiences the event at time t(k) and the other does not (and did not
experience it prior to t(k)).

6. Experiments
Our experiments were performed for 3 datasets: METABRIC, SUPPORT, and FLCHAIN. Data
were transformed so that categorical features were encoded and numerical ones standardized.
We selected five models for testing. These were PMF, LogisticHazard, DeepHit, N-MTLR and
BCESurv. Each of the models was trained 200 times. During the process, we collected SHAP
values and Kendall’s Tau correlation coefficients. Based on the results, we performed statistical
tests to determine the degree of differences between the models.

6.1. Datasets

All datasets have been taken from the pycox Python package (version 0.3.0). We selected the
METABRIC, the SUPPORT and the FLCHAIN datasets. They often appear in literature (e.g.
[9, 11, 13]), and can be regarded as benchmarks in the domain of survival analysis. We encoded
categorical features using the one-hot encoding method. An example of such a feature is "race"
from the SUPPORT dataset. Binary features were kept unchanged. Numerical features were
standardized.

The METABRIC (The Molecular Taxonomy of Breast Cancer International Consortium)
dataset contains information about breast cancer patients. More than half of the cases have
an observed death event. Each of the patients is described by a gene and protein expression
profile. The dataset contains 1904 samples, each having 9 features. These include values like
age and hormone treatment indicators. No feature values are missing. Around 42% of samples
are censored.

The SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treat-
ment) dataset contains information about hospitalized patients. In total, there are 8873 samples,
each having 14 features. No values are missing because the dataset has been preprocessed as
described in [9]. Patients are characterized by features such as age, heart rate, temperature, and
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white blood cell count. In the dataset, approximately 32% of samples do not have an event
observed (are censored).

The FLCHAIN (Free Light Chain) dataset is based on patient data from Olmsted County,
Minnesota. There are 6524 samples, each having 8 features. For the purpose of our work, we
have removed the sample.yr feature, which represents the year in which the blood sample
was collected from a patient. FLCHAIN has the highest percentage of censored samples (∼70%)
among the datasets used in our work.

6.2. Structure of the experiments

The experiments were constructed using Python (version 3.12.3). We have selected 5 models
from the pycox package (version 0.3.0). These were DeepHit, PMF, N-MTLR, BCESurv, and
LogisticHazard. We also used the shap package (version 0.47.0) for SHAP values.

Each of the models was parameterized with a neural network with two hidden layers, each
having 32 neurons. Batch normalization was set to true and dropout rate was set to 0.1. For each
model, the learning rate was selected based on learning rate finders provided by the pycox
package. The model training process included a callback for early stopping. The number of
epochs was limited to 256. Each model was trained for 200 rounds. In each round, the datasets
were randomly split into training-validation-test subsets (in the proportion of 8:1:1). All models
were trained on the same data split for a given round. Both training and validation sets were
used in the model fitting process. All of the selected models required discrete-time samples. For
that reason, the duration values from the datasets had to be divided into time intervals. In our
experiments, the number of time spans has been set to 10. These were named starting from t0 to
t9. We used the discrete time label transformer from the pycox package with the discretization
scheme set to "equidistant".

In each training round, the SHAP values and the Ctd values were collected. The latter ones
were calculated based on predictions made by the models for test sets. Each model produced a
survival function for data samples. Greater function values represent higher chance of survival.

Explainer objects from the shap package were used to determine the impact of each
feature on outputs of the models. For this purpose a set of background samples had to be
selected. We sourced 200 samples from the training set. Furthermore, samples for SHAP value
calculation had to be provided to the Explainer object. These were also selected from the
training set, but avoiding an overlap with the background samples. The use of training sets as
the basis for the calculation of SHAP values ensures that the characteristics of the data on which
the models were trained are reflected in the results.

Based on the SHAP values, we calculated the mean absolute values for each feature. They
can be perceived as the magnitude of impact the feature has on the model’s outputs. The mean
absolute value can be calculated using the formula:

µ(S) =
Σn
i=1|si|
n

, (6)

where S represents the SHAP values, si is the i-th SHAP value from S, and n is the number of
values in S.

Based on the mean absolute SHAP values, we calculated the contribution percentages each
feature had on the models’ outputs. The percentages can be calculated using the formula:

cm =
µ(Sm)

ΣM
k=1µ(Sk)

, (7)

where cm is the m-th feature’s contribution percentage, Sm are the SHAP values obtained for
the m-th feature, and M is the number of features. We can observe that contribution percentages
of the features add up to 1.



ISD2025 BELGRADE, SERBIA

Apart from the percentages, we also gathered Kendall’s Tau correlation [10] values for each
of the features. Kendall’s Tau can be viewed as a measure of concordance or agreement between
pairs of numbers in two rankings [8]. It takes into account the relative ordering of value pairs.
Kendall’s Tau is based on the number of concordant and discordant pairs. The correlation values
range from -1 to 1, where -1 represents complete disagreement and 1 is perfect agreement. The
value of 0 signifies that there is no correlation between the features’ values. An advantage of
Kendall’s Tau is that it can be easily interpreted and might be more preferable to Spearman’s
rank [3]. The correlation values in our experiments were calculated between the SHAP and
the feature values. The results were averaged over the training rounds to reduce variance. An
overview of the value collection process can be seen in Figure 1.

Fig. 1. The outline of value collection part of the experiments

We applied the Friedman test to the obtained feature contribution percentages of the models.
For multiple comparisons, the Wilcoxon signed-rank test with the Bonferroni correction was
used. A significance level of 0.05 was adopted for all of the tests. We calculated the percentage
of statistically significant differences between the models for all pairwise comparisons.

6.3. Results

Each of the selected models was evaluated on a test set. We gathered Ctd values that were
averaged over training rounds. Standard deviation values were also collected. The results we
obtained for each dataset are presented in Table 1.

Table 1. The Ctd results obtained for the three datasets

METABRIC SUPPORT FLCHAIN
Model mean Ctd std Ctd mean Ctd std Ctd mean Ctd std Ctd

LogisticHazard 0.5353 0.0636 0.5010 0.0248 0.7519 0.0210
N-MTLR 0.5655 0.0345 0.4536 0.0167 0.7857 0.0175
DeepHit 0.6129 0.0540 0.4828 0.0396 0.7775 0.0271

PMF 0.5670 0.0338 0.4516 0.0202 0.7831 0.0203
BCESurv 0.5833 0.0360 0.4576 0.0229 0.7679 0.0271

In the table, we have marked the highest mean Ctd scores for each of the datasets with bold
font and the lowest with an underline. We can see that for the METABRIC dataset, DeepHit



MAGNUSZEWSKI, KRETOWSKA FINDING DIFFERENCES BETWEEN DISCRETE-TIME DEEP LEARNING SURVIVAL MODELS

performed the best and LogisticHazard the worst. When considering the standard deviation of
Ctd, LogisticHazard varied the most between the training rounds, with DeepHit taking second
place. When considering the SUPPORT dataset, we see that the LogisticHazard model per-
formed the best, based on the Ctd value. DeepHit was the second best and PMF had the worst
score amongst the models. For the FLCHAIN dataset, the LogisticHazard model scored the
lowest Ctd value among the models and N-MTLR the highest. The results suggest that, depend-
ing on the selected dataset, different models might perform the best and that the LogisticHazard
model tends to have the lowest score values. One might want to avoid models that tend to give
poor results.

As a result of the experiments, we prepared visualizations (named "arrow plots") that cap-
tured both the contribution percentages cm of the features (points) and the correlation values
between the features and the SHAP values (arrows). A separate plot was prepared for each fea-
ture. The reason for creating the visualizations was to make it easier to observe the differences
between the models. Two arrow plots for the METABRIC dataset can be seen in Figures 2 and
3. The x-axis represents the time intervals. On the y-axis, feature contribution percentages are
presented. The arrows on the plots correspond the the Kendall’s Tau correlation values.

Fig. 2. The arrow plot obtained for the age_at_diagnosis feature of the METABRIC dataset

Fig. 3. The arrow plot obtained for the MKI67 feature of the METABRIC dataset

In Figure 2, we can observe that the age at diagnosis had high contribution percentages
for most of the time spans and models. Apart from time interval t0, all models had strong
negative correlation for the age feature and model output values. In time intervals t7 to t9
we can see that there were larger differences between the models than for earlier time spans.
Based on the direction of arrows we can infer that with an increase in age of a patient, the
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survival curve estimate values diminished. That might seem intuitive, as with greater age the
human immune system might become weaker and the body might not be able to fight with an
illness. Furthermore, we can see that in the first time interval there is a disagreement between
the models. BCESurv, PMF, and N-MTLR have positive correlation values.

In contrast to Figure 2, we can see that the contribution percentages presented in Figure
3 have smaller values (below 25%). Furthermore, there seems to be a disagreement between
the models when considering the correlation coefficient values. The arrow plot might suggest
that the relationship between MKI67 gene expression indicator and the outputs of the models is
non-obvious. In addition, we can observe that for most of the time intervals, the pair BCESurv-
DeepHit had the largest differences in the correlation values between each other. For most of
the intervals, DeepHit had on opposite correlation value sign than other models.

In addition to arrow plots for individual features of the METABRIC dataset, we prepared
arrow plots for time intervals. A plot for the t8 time span can be seen in Figure 4. We might

Fig. 4. The arrow plot for the t8 time interval for the METABRIC dataset

observe that for some of the features there is agreement between the models as to the impact
of the feature on the survival probability. Age at diagnosis, hormone therapy indicator, and
radiotherapy indicator have high correlation values. LogisticHazard and DeepHit had lower
values than other models for these features. Furthermore, there is a disagreement between the
models for the remaining features.

During our experiments, we also prepared arrow plots for the SUPPORT dataset. The plots
can be seen in Figures 5 and 6. Based on them, we can observe that majority of the models seem
to agree as to the influence of the age feature on model outputs. The arrows point downwards
for most of the time intervals, meaning that the correlation coefficients were negative. It seems
probable that with an increase in age, the probability of survival decreases. We can see that
most of the disagreement between the models is present in the t0, t8 and t9 time spans. Taking
into account Figures 2 and 5, we might observe that in both cases the most divergent results are
present in the first time interval t0.

Figure 6 presents the contribution of respiration rate to the model outputs. We can see
that the percentage values are close to zero. This means that the respiration rate feature has
little effect on the model outputs. Despite the correlation values being low, there seems to be a
positive trend, due to arrows pointing upwards, most often for BCESurv and DeepHit. It might
be possible that those patients who have a higher respiration rate tend to have slightly better
survival outcomes.

Apart from arrow plots, we performed Friedman tests and Wilcoxon pairwise comparison
tests. The former gave statistically significant results for all features apart from radiotherapy
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Fig. 5. The arrow plot obtained for the age feature of the SUPPORT dataset

Fig. 6. The arrow plot obtained for the resp_rate (respiration rate) feature of the SUPPORT dataset

indicator from the METABRIC dataset. The Wilcoxon tests were based on the feature contribu-
tion percentages. The obtained results are presented in Figure 7 in the form of three heatmaps.
Each cell contains a percentage value, calculated as the fraction of all of the Wilcoxon tests

Fig. 7. The percentages of statistically significant differences between the models

performed between a pair of models that were statistically significant. We can observe that there
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are contrasting values for model pairs between datasets, especially for PMF-DeepHit, NMTLR-
BCESurv, and PMF-NMTLR. It is interesting to see that the pair LogisticHazard-BCESurv
scored one of the lowest percentage values for each dataset. This might suggest that there are
similarities in how both of those models generate predictions based on the data. What is more,
we can observe that for the FLCHAIN dataset, many model pairs scored high difference per-
centages. The FLCHAIN dataset had the highest percentage of censored data (around 70%)
among the examined datasets. This might suggest that the fraction of censored data in a dataset
significantly impacts the model training process.

7. Conclusions
The goal of our work was to examine differences between discrete-time deep learning survival
models. We prepared a special kind of visualization, named arrow plots, which were used to
help with the observation of feature importance values and correlation values. Additionally, we
performed Friedman and Wilcoxon tests to find whether there were any significant differences
between the models.

Based on the results presented in out work, we might observe that there are differences be-
tween the models. Analyzing the outcomes of statistical comparisons, one can see that some
model pairs, namely PMF-DeepHit, NMTLR-BCESurv, and PMF-NMTLR, had one of the
highest percentage value changes between tested datasets. We could observe that the percent-
ages of differences between the models tend to become higher for the FLCHAIN dataset, which
had the highest percentage of censored samples. This could suggest that the degree of censoring
of a dataset has significant impact on the model training process.

The arrow plots presented in our work have shown that for some time intervals DeepHit
had an opposite correlation value sign than other models. Despite this, DeepHit was able to
score one of the best scores based on Ctd for all three datasets. It could suggest that, when
compared to other models, DeepHit is able to find different relations that might positively impact
the predictive capabilities of the model. Another observation based on the arrow plots is that
the contribution percentage values might have a tendency to diverge towards the first and the
last time intervals. In addition, the correlation values in these intervals might have a different
sign compared to other time spans. This could be due to the equidistant division of time into
intervals. It might also suggest that it is particularly difficult to correctly model the most extreme
time intervals.

Our method can be applied to various survival analysis models. The flexibility of use can be
regarded a strength. However, the method requires the time to be divided into discrete intervals.
Moreover, our method does not calculate the precise degree of similarity between the models
but only the percentage of statistically significant differences. It could be beneficial to further
develop the similarity measure. The results of our experiments provide early insight into the
comparison of different survival models which could pave the way for more extensive research.

In continuation of this work, we might test additional model explainability methods and
employ other approaches to measure the degree of differences between models. Apart from that,
it could be beneficial to collect measurements for additional datasets and allow the selection
of the most optimal model hyperparameters (e.g. via grid-search). More work is needed to
establish whether we can use model explainability methods to judge the differences between
discrete-time survival analysis models.
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