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Abstract

Data lineage is the set of techniques for tracking the flow of data throughout its lifecycle. These
techniques are crucial for data management, governance, and compliance with regulations. Lin-
eage links are maintained between data and database objects, but they are often broken by tem-
porary objects and user defined functions. To the best of our knowledge, discovering broken
lineage links has not been addressed yet in research. In this paper, we present a method for
detecting broken lineage links between database objects. To this end we apply machine learn-
ing techniques on available metadata. We extract feature vectors and employ a classification
approach to determine whether one database object is a source for another. Initial experiments
on large database schemas show that the discovery of broken lineage links is possible at an
acceptably high probability.
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1. Introduction and motivation
Digital transformation involves transforming company’s internal processes to make use of data
engineering, data management, and data analytics technologies, with the final goal to increase
company’s efficiency and improve customer relations. It relies on the ability of a company
to build a complex information system, which typically integrates multiple heterogeneous and
distributed data sources. Data integration technologies have been researched for decades (see
for example [4, 5], [8], [13], [16], [18]). Key challenging factors in data integration include:
(1) methods for homogenizing heterogeneous data, (2) methods for discovering erroneous data
and correcting them (data cleaning), (3) providing efficient access to integrated data, and (4)
providing means for tracing data processing from their source to destination (a.k.a. data lin-
eage, data provenance). Two important aspects of data lineage are crucial for successful digital
transformation: (1) trust and reliability as well as (2) compliance with regulatory demands.



BOINSKI ET AL. LEVERAGING MACHINE LEARNING TECHNIQUES FOR DISCOVERING BROKEN LINEAGE . . .

Trust and reliability are essential in implementing the properly functioning automation of
business processes. Data-driven decision making, inherent to such an approach, is only good as
the data supplied. Lack of the data lineage information inhibits the verification of its correctness
and applicability to the specific process. Moreover, decisions based on low-quality data are risky
and highly uncertain. Failure of such automated business processes can cause adverse effects
such as loss of income, client dissatisfaction, company’s loss of credibility and, in extreme cases,
compliance issues.

Compliance issues can be caused by company’s failure to abide by regulatory demands.
Data processing must adhere to multiple strict regulations (e.g., GDPR, CCPA, HIPAA). These
require companies to report on how the data was collected, processed and used. Thus, audit trails
provided via data lineage are necessary to meet these obligations. Providing the full lineage
record for financial reports is an obligation in the financial sector, which is strictly regulated by
means of European law, national law, and recommendations issued by institutions controlling
the sector.

Data lineage represents the set of techniques for tracking and (typically) visualizing the
flow of data throughout its lifecycle, i.e., from a data source (typically OLTP systems) to its
final destination (typically a data warehouse, data lake, or data lakehouse) [1], [11], [29]. These
techniques are crucial for data management, governance, and compliance, since they allow to
analyze data pipelines, show how data were processed by every single step of a data pipeline,
asses data quality, and prove data correctness for various supervisory bodies (especially in the
financial industry).

Data lineage techniques have been researched for decades and resulted in numerous solu-
tions. The lineage information is typically represented either by: (1) annotations attached to
source tuples or their individual attributes, e.g., [6, 7], [10], [12] or by (2) additional structures
that relate source and final (after processing) data, e.g., [14], [22], [25]. Commercial imple-
mentations allow to track, analyze (the so-called impact analysis), and visualize lineage that is
based mainly on primary-foreign key relationships between database objects, see [17], [21] for
overviews. Data lineage techniques allow to record relationships not only between data but also
database objects.

In real applications, data pipelines often produce auxiliary temporary objects (e.g., tempo-
rary tables), typically in a data stage, in a data warehouse architecture. Moreover, data pipelines
for big data frequently use user defined functions (UDFs) that allow to implement code snip-
pets in various programming languages. UDFs allow to implement a logic tailored to a specific,
usually not typical, data processing problem, e.g., [9], [23]. UDFs also produce temporary table-
like data (e.g., table functions). Temporary objects and data produced by UDFs cease to exist
after a given pipeline ends its execution. As a consequence, data lineage links get broken. To
the best of our knowledge, either the existing research solutions or commercial or open-source
systems do not support discovering broken lineage links.

This research work was motivated by a real problem faced by the financial industry. They
aim at building a solution for discovering lineage links between data warehouse objects. The
scope of objects designated for analysis is considerable, comprising over 11,000 stored proce-
dures/ functions, exceeding 2 million lines of code, more than 5,000 views/ materialized views,
and tens of thousands of tables.

In this paper, we propose a method for discovering broken lineage links between database
objects (Section 2). It is based on classification models learned from large database schemas.
The performance of the method (in terms of F1) was assessed experimentally (Section 3). The
results show that it is possible to discover broken lineage links with high probabilities. Conse-
quently, new research path in data lineage were identified. They are outlined in Section 4.
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2. Contribution: machine learning for discovering broken lineage
The solution presented in this paper is the continuation of a previous work presented in [15].
The previous work introduces an approach to solve the broken lineage problem by means of a
binary classification algorithm (Random Forest). The model is learned based on several features
describing the similarity of two database objects (i.e., tables and views).

In this paper, to improve lineage discovery, we use the same method but extend it with: (1)
a new set of features for classification and (2) additional classification models beyond Random
Forest. We also perform a wider range of experiments.

Originally, the similarity between two tables was quantified using three features (with Jaro-
Winkler [28] as the string similarity measure): (1) similarity of object names, (2) average simi-
larity of attribute name pairs between the two objects: a source and a target (excluding attribute
names containing ’id’), and (3) the number of attribute names in the source object that exhibit a
similarity greater than 0.9 with the target object’s name.

In this paper, we propose the following list of features for each pair of source and target
database objects (similarly as before, the string similarity measure used is Jaro-Winkler):

• similarity between the source and target object names,

• maximum similarity obtained when comparing the source object name with each of the
target object’s attribute names,

• maximum similarity obtained when comparing the target object name with each of the
source object’s attribute names,

• maximum, minimum, mean, and median similarity between target object attribute names
and source object attribute names.

The training and testing datasets used in this study are generated by analyzing the database
creation scripts. Such scripts contain commands that create tables, views, or temporary tables
using SELECT statements. The specific types of commands include:

• CREATE TABLE,

• CREATE TABLE ... AS SELECT,

• CREATE TEMPORARY TABLE ... AS SELECT,

• CREATE VIEW

If a database object is a table created by command CREATE (TEMPORARY) TABLE ...
AS SELECT, or it is a view, then source object names used in the defining commands are
extracted. Next, a graph is built, where vertices represent database objects, while arcs represent
connections between source and target objects.

For each vertex representing a target database object (the vertex is incident with at least one
incoming arc), all its source objects are retrieved. If the source object is a temporary table, then it
is replaced with its source objects recursively, until only permanent source objects remain. This
last step allows to find links (i.e., dependencies) from the target table to the permanent source
database objects, which would normally be lost due to removal of intermediate temporary tables
(broken lineage).

For example, see Fig. 1 and Fig. 2. The first figure presents a fragment of a database of a
medical application. Actual dependencies among tables are represented as solid arrows. Con-
sider a temporary table "SCHEDULED EXAMINATIONS" in Fig. 1 that assigns examinations
to particular patients. The lineage of the data in the table includes records from tables "PA-
TIENTS" and "EXAMINATIONS". During application runtime, the scheduled examinations
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are moved to "COMPLETED EXAMINATIONS" table. Thus, the lineage of data in this table
includes records from "SCHEDULED EXAMINATIONS" and, recursively, from "PATIENTS"
and "EXAMINATIONS". However, since the table "SCHEDULED EXAMINATIONS" is tem-
porary, its eventual removal creates a broken lineage problem.

Fig. 1. Actual dependencies among tables

Fig. 2 presents such a situation. The "COMPLETED EXAMINATIONS" data lineage de-
pends on still existing "PATIENTS" and "EXAMINATIONS" (dashed arrows), but this informa-
tion is lost. The remaining dependencies are denoted by solid arrows.

Fig. 2. Missing dependencies after removing temporary table "SCHEDULED EXAMINATIONS"

The broken lineage dependencies are simulated using the recursive mechanism previously
described for generating dataset object pairs. For all the obtained source-target pairs the afore-
mentioned similarity features are computed and are labeled with the decision attribute value 1
(later denoted as the positive class). For all (ordered) pairs of two permanent objects, such that
they were not labeled previously, the feature values are computed as well and are labeled with
the decision attribute value 0 (later denoted as the negative class).

The main problem with this approach, is that the dataset can be highly unbalanced, meaning
there are many more negative class instances (0) than positive class instances (1). In our experi-
ments the ratio of positive to negative classes was around 1:300. Thus, a suitable approach must
be employed to handle the class imbalance effectively.

3. Experiments
The experiments were designed to evaluate several classifiers in addressing the broken lineage
problem. We generated training and testing database schemas using Large Language Models
(see Section 3.1). Next, for each pair of attributes (in both training and testing datasets), a set
of features was generated, as described in Section 2. Finally, multiple different classification
models for several different parameter sets, were trained using the training dataset. The trained
models were applied to the testing dataset and quality metrics were computed. The three best
models were chosen. We present their short description in Section 3.2 and the obtained results
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in Section 3.3.

3.1. Training and testing database schemas

For the purpose of the experiments we have prepared database creation scripts via two different
Large Language Models (LLMs), to model two distinct "database designers". The first database,
representing a financial system, originally used for training in [15], was generated by Llama3 [2]
model in the Ollama3 tool. The database was composed of 223 regular tables, 93 temporary
tables, 93 materialized query tables and 53 views. In our experiments, we used it for testing.

To construct the second (training) database, several of the most popular free LLMs were
evaluated. Ultimately, Grok [3] was selected due to its superior performance. Even though Grok
turned out to produce the schema of the highest quality, the task of generating the schema proved
to be challenging. The database schema was intended to include interdependent objects (related
to other objects). Therefore, beyond standard tables, it was necessary to generate temporary
tables and materialized query results (using CREATE TABLE ... AS SELECT commands).

We assumed that the target schema, representing the health management system database,
would include 250 regular tables, 200 temporary tables, 200 materialized query result tables and
100 views. However, despite the advanced capabilities of the tested LLMs, including Grok, it
was not possible to generate such a large and interconnected schema without employing iterative
processing, even for the initial 250 standard tables (i.e., without dependencies based on ... AS
SELECT commands). Definitions of subsequent tables that referenced existing database objects
were frequently generated incorrectly, which required repeated human intervention and error
correction. Moreover, the frequency of errors increased with the growing complexity of the
schema. For example, among the final set of 100 materialized query result tables, approximately
50% were initially generated with significant inaccuracies.

SQL scripts for generated databases can be downloaded from https://github.com/
witold-andrzejewski/broken-provenance.

The testing and training datasets were created as described in Section 2. The training dataset
included: 1 013 positive rows representing existing dependencies between source and target
database objects, and 299 924 negative rows representing pairs where the source object was
not used to generate the target object. The testing dataset initially contained 408 positive rows
and 134 976 negative rows. However, in order to balance the classes in the testing dataset, we
randomly sampled only 408 negative rows to ensure the equal number of positive and negative
instances.

3.2. Tested classifiers

We tested various classification models available in Python’s scikit-learn and compatible pack-
ages. The best results were obtained from methods specifically designed to handle highly un-
balanced datasets. The three best methods were as follows: BalancedBaggingClassifier and
RUSBoostClassifier [24] (from package imblearn [20]) as well as LGBMClassifier [19] (from
package lightgbm [26]).

BalancedBaggingClassifier is an implementation of the bagging approach with additional
balancing of the training dataset by applying some sampling strategy. In our experiments, we
used the default settings, in which the base estimator was a decision tree, the sampling strategy
was based on random undersampling, and the training process encompassed bootstrapping.

RUSBoostClassifier is a modification of AdaBoost in which a random undersampling is per-
formed at every iteration of the boosting algorithm. During the experiments, the best results
were obtained when the number of trained estimators was increased to 100 and the base estima-
tor was Support Vector Machine. Other parameters were set to default values.

LGBMClassifier is a modification of gradient boosting decision tree which includes sam-



BOINSKI ET AL. LEVERAGING MACHINE LEARNING TECHNIQUES FOR DISCOVERING BROKEN LINEAGE . . .

Table 1. The performance of the tested classifiers

RUSBoostClassifier Accuracy 0.78 Confusion matrix
Class Precision Recall F1-Score Predicted 0 Predicted 1

0 0.75 0.83 0.79 True 0 337 71
1 0.81 0.73 0.76 True 1 112 296

LGBMClassifier Accuracy 0.72 Confusion matrix
Class Precision Recall F1-Score Predicted 0 Predicted 1

0 0.66 0.92 0.77 True 0 375 33
1 0.87 0.53 0.66 True 1 192 216

BalancedBaggingClassifier Accuracy 0.703 Confusion matrix
Class Precision Recall F1-Score Predicted 0 Predicted 1

0 0.71 0.69 0.70 True 0 281 127
1 0.70 0.72 0.71 True 1 115 293

pling of data instances based on gradients and special treatment of exclusive features. In our
experiments, the best results were obtained for the default settings, with the exception of the
number of estimators reduced to 10 and the learning rate reduced to 0.05. Moreover, class
weights were changed to 1 for the negative and to 100 for the positive class, to counter the class
imbalance problem.

3.3. Results

The results of experimental evaluation are presented in Table 1. The best results were obtained
by RUSBoostClassifier, with accuracy up to 0.78 and F1-scores better than the two other models.
Moreover, one can easily notice that the results of BalancedBaggingClassifier are completely
dominated by RUSBoostClassifier (every numerical result is better). Nonetheless, both of these
classifiers have the advantage that roughly the same numbers of database object pairs were
predicted to be either the positive or the negative class. For RUSBoostClassifier, 449 pairs
of database objects were predicted as negative and 367 were predicted as positive, while for
BalancedBaggingClassifier, 396 pairs were predicted as negative and 420 as positive.

Since the testing dataset was also balanced, this led to balanced precision and recall values.
LGBMClassifier achieved accuracy of 0.72, which is in-between the two previously described
classifiers. Unfortunately, the results for this classifier are more unbalanced, as 567 pairs were
predicted as negative and 249 as positive. This shows the tendency of the trained model to
predict the majority (negative) class and causes the recall of negative class and precision of
the positive class to be increased at the cost of precision of the negative class and recall of the
positive class.

4. Summary and future work
In this paper, we present a classification-based approach to metadata-based broken lineage de-
tection. In particular, we evaluate a feature list for comparing the metadata of two database
objects (permanent tables, temporary tables, and materialized query results). These features,
when combined with the training lineage data, are used to train classifier models. Our solution
is evaluated on many different classifiers. The obtained results show that it is possible to predict
broken lineage links with the accuracy up to 0.78 and F1 up to 0.79 (RUSBoostClassifier).

Notice that the experiments were run on large, synthetically generated OLTP-like schema.
Since our method proved to be satisfactory, in the next step, we plan on training and testing
models on historical lineage links acquired from code repositories (e.g., GitHub, GitLab), rec-
ognized database benchmarks (e.g., tpc.org) and from our own databases. The work presented
here opens a new research path in data lineage.

The first task is to verify how our method performs under dirty metadata describing database
schemas. Second, we plan on testing a new, LLM-based approach for comparing the attribute



ISD2025 BELGRADE, SERBIA

and database object names. In particular, we plan of normalizing each such name by extracting
and extending each compound word or acronym into full size. For example, "emp_main_sal"
attribute name, can be converted into a list: ["employee", "main", "salary"]. Each such word can
be additionally enriched with a list of its synonyms. Similarity between names can be computed
based on how many words agree on at least one synonym and how many words do not. Third,
as an alternative, we envisage comparing the embeddings [27] of compound words to determine
whether the embeddings of words used in two names are similar. Fourth, we plan on increasing
heterogeneity of training and testing database schemas via prompt engineering or using multiple
distinct LLMs similarly as in Section 3.1 as well as including real-world datasets. Next, we will
explore the possibility to extend the classification model with new features like schema patterns
(e.g., OLTP, OLAP) and value patterns. We will also discover misclassification patterns and
test how the degree of class imbalance impacts the results. Finally, we plan to extend the set of
classification evaluation metrics to accurately analyze the quality of generated models.
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