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Abstract 

Non-intrusive monitoring of electrical loads (NILM) implemented by the state analysis method 

critically depends on the selection of appropriate features to identify devices. The commonly used 

expert selection is not optimal, and computational methods of feature selection require the 
establishment of an optimisation criterion that will ensure a satisfactory level of NILM system 

performance. An important element of the discussed method is the selection of the classifier and its 

matching with the selection method to construct a softsensor. In this work, four feature selection 

methods (Boruta, ReliefF, mRMR, the author's method) and four classifiers (decision trees, random 

forests, artificial neural networks and a hybrid classifier) were implemented and tested. Software was 

implemented for the softsensor architectures tested, enabling the verification of optimal 

configurations for NILM. The research confirmed that the selection of features using optimisation 

methods and the use of a softsensor allow for better support in the decision-making process. 

Keywords: classification algorithms, softsensors, feature selection, machine learning. 

 

1. Introduction 

Artificial intelligence is an important component in solving problems in the field of broadly 
understood classification, supporting decision-making processes [3, 8, 23]. Various approaches 

have been proposed to implement Non-Intrusive Load Monitoring (NILM) in scientific works 

[8], [23], [9], [14], [27], [30], [34]. Their analysis emphasises the key relevance of selecting 
identification characteristics and identification methods [15], [19], [26], [29], [32, 33]. The 

most widely used classification methods in NILM include artificial neural networks, including 

deep learning networks [5], [16], [25], [31], [33, 34], statistical methods [31], [34], k-nearest 

neighbours [4], [33, 34], rule-based methods [24], [33, 34], genetic algorithms [8], optimisation 
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methods [2], and hybrid methods [1]. The work uses intelligent classification methods, such as 

artificial neural networks, decision trees, and random forests, and proposes an original hybrid 

classifier. Additionally, analytical methods for selecting identification features were used 
instead of the most commonly used expert selection [29], [34], usually limited to basic features 

such as active power, reactive power, and effective current value. In this way, two sets of 

components were obtained, necessary to design and construct an optimal soft sensor dedicated 
to non-intrusive monitoring of electrical devices. The latest studies indicate that real-time 

monitoring of device operation, enabling detailed analysis of energy consumption, can lead to 

15-20% of energy savings. This is possible due to the detection of devices that do not work and 

devices that cause anomalies in the network due of their faulty operation [8], [23]. 
 

1.1. Motivation and Contribution 

A detailed list of features used in NILM can be found in [29], [32]. In the present study, 168 

features obtained from high-frequency measurements (51.2 kHz) were used. A large number of 

potential identification features increase the likelihood of finding features relevant to the 
identification process but also increase the chances of processing features that carry no 

information or redundant information. This causes the need for a larger number of objects 

representing individual classes to determine the correct division of the test set in terms of device 
type identification. Meeting this condition is often impossible. To ensure the same classification 

accuracy as in the case of a lower-dimensional space, the number of samples must increase 

exponentially with increasing dimension of the feature space. Therefore, efforts have been 

made to reduce the dimensionality of the feature space [4, 5], [6, 7], [13], [15], [25],and limit 
it only to the essential features for identification. The available research results and their 

analyses show that redundancy and relevance of features can be assessed based, among other 

things, on mutual information entropy, neighbourhood analysis, and evaluation of the influence 
of individual features by randomly modifying them using selection methods [4], [6], [22], [28]. 

The process of identifying a set of features that enable effective identification of electrical 

devices for NILM purposes has been the subject of scientific research and has been especially 

intensive in recent years [4], [6], [15], [19], [29], [32].  
The key contribution of the present work is as follows: 

• the use of the precise and reliable class A energy quality analyser for empirical testing in a 

real environment. The analyser used for the measurements allowed for 1024 samples in the 

voltage period and 256 samples in the current period; 

• the use of 168 steady-state descriptive characteristics, in particular reactive power harmonic 
characteristics and peak factor parameters as input variables, which fills a gap related to the 

use of these parameters for NILM; 

• an innovative contribution of the work is the proposal and design of a softsensor as a 

component that integrates feature selection and identification in a single module built on the 
synergistic cooperation of both components. This solution aims to maximise the value of 

the identification quality index of device classes (rather than individual devices). Different 

combinations of selection and classification methods were tested, assessing the optimality 

of their interaction and proposing: 

− a hybrid classifier (HC) that uses the reliability of the subclassifiers determined at the 
testing stage for decision-making; 

− a feature selection method that combines the properties of the nearest-neighbour method 

with correlation analysis between features and features and score. 

 
1.2. Review of the state-of-the-art 

In [29], Sadeghianpourhamami implemented NILM using data from the PLAID repository. 
They examined 11 different types of devices using 55 steady state features and 23 transient 

state features collected from 56 households. To eliminate redundant features, they implemented 

a process in which features were first selected using the recursive feature elimination (RFE) 
method. In the second step, the random forest algorithm (RF) is iteratively trained using the 

selected features and the permutation relevance of each feature is calculated simultaneously to 
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eliminate the less significant features. The highest classification accuracy, at approximately 

91%, was achieved for signatures composed of a combination of 20 features.  

Bao presented non-intrusive monitoring of 11 electrical devices in his work [19], achieving 
an Accuracy coefficient of 95.2%. They performed the optimal identification feature selection 

using information about entropy and the ReliefF algorithm, and the number of neighbours for 

the kNN algorithm was chosen by trial and error. They showed that the results obtained for the 
selected feature set are better than those for the original set. Both steady-state and transient-

state parameters were used for the studies. 

In the work [15] presented by Hoiudi and colleagues, research was conducted on two data 

sets: the author’s data set that contains data on 24 types of devices, from which the authors 
extracted 61 classes, and the PLAID data set that describes 11 types, from which the authors 

extracted 70 classes. For the studies, 34 features that met additivity conditions were selected. 

The authors used the following feature selection methods: the NN-based sequential forward 
feature selection method, principal component analysis (PCA), linear discriminant analysis 

(LDA), mutual information (MI), and two proprietary methods: a method involving iterative 

addition of features and evaluation of the Accuracy indicator values and a method using a 
specially prepared deep neural network (DNN). Individual methods, as a result of selection, 

chose from 12 to 27 features for the author's data and from 12 to 33 features for the PLAID 

database. Classification was carried out with four methods: k nearest neighbours (kNN, k=7), 

LDA, DNN and RF methods for each selected subset of features. For both datasets, the authors 
achieved accuracies exceeding 99% for the author's dataset for MI selection and for the RF 

classifier and for the PLAID dataset for kNN-based sequential forward selection and the kNN 

classifier. When evaluating the results obtained, it is essential to remember that they are 
incomparable to the others, as each type of device was divided into several classes. 

Souza [32] et al. used 38 features selected based on IEEE 1459-2010 and Conservative 

Power Theory (CPT). Using collinearity analysis of the features, they made a stepwise 

reduction in the number of features. They used three machine learning methods: k-NN, decision 
tree, and random forests, evaluating the results using a 10-fold cross-validation method to check 

whether the resul-ting set offered a good representation of the loads. The authors did not state 

what criteria they used to extract the initial 38 features from their complete set derived from 
IEEE and CPT power theory. 

Isanbaev [19] use their own data acquired using a high-frequency method that involves 

measurements for 10 electrical devices. For each device, they select a set of 150 features (50 
harmonics: current, active power, and a non-standard combination of these features) and 

statistical measures (min, max, mean, and standard deviation). They implement and compare 

eight data preprocessing techniques and six-dimensionality reduction methods for energy 

consumption data. The analytical results obtained vary according to the preprocessing and 
feature reduction methods used. The authors obtained them for individual devices rather than 

device classes, so they can be compared with the results obtained by Houidi [15] but cannot be 

related to the results of other works. 
The authors of related research do not mention the factor that influences the ambiguity of 

signatures, which is the variability of the power supply conditions. Device signatures are then 

burdened with deviations that result not only from changes in the effective voltage, but also 
from the variable contribution of higher harmonics, which introduce distortions to the 

waveform [22]. Many of the defined device types exhibit several different operating states, 

sometimes an infinite number of operating states [12]. For the purposes of the research, 

electrical quantities were measured, ensuring very diverse power supply conditions by 
conducting the measurements at different locations. 

 

2. Softsensor design methodology for steady-state analysis 

Analysis of steady-state operation of electrical equipment for monitoring purposes allows a 

great deal of potential information features to be extracted. The main difficulty of this method 

is: the selection of features that have relevant information properties, selection of a classifier 
that will make the best possible identification on the basis of these features. These two steps 

form the basis for the construction of a sotftsensor that forms a coherent component based on 

the synergistic cooperation of the constituent components. In this paper, we present four feature 
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selection methods that use different criteria to assess their identification properties and four 

different classifiers, which is the basis for the construction of 16 softsensors. 

 

2.1. Data Acquisition 

Eleven types of single-phase, two-state and multi-state electrical devices were used in the study, 

with finite and infinite numbers of states: kettles (14501900 W), laptops (2249 W), soldering 

irons (1080W), hoover (4501100 W), mixers (20103W), microwave (2101360W), dryers 

(1421722W), grinders (37394W), TV (20206W), toasters (630887W), irons 

(10241786W). It is worth analysing these devices in the context of electrical engineering 

because not only the number of identified devices, but also their type affects the quality of 

identification. The traditional division of devices into inductive, resistive, and capacitive 
devices is essential because of the similar nature of the characterisation of devices of one type. 

Consequently, it is much more challenging to find parameters that distinguish them if their 

power falls within overlapping ranges. This problem was deliberately addressed in the present 
research. To obtain identification data, electrical device operations were measured in 12 

households in the Podkarpackie Voivodeship. Conducting measurements in multiple locations 

ensures that the data is obtained in various power supply systems, which, on the one hand, 

complicates the identification process and, on the other hand, allows for easier generalisation. 
Each type of device is described by 7 to 22 sets of samples obtained from different 

representatives of that type. Feature sets were obtained by measurements made using the Elspec 

BlackBox G4500 power quality analyser. The analyser used for the measurements was a Class 
A measuring instrument, allowing for the execution of 1024 samples in the voltage period and 

256 samples in the current period. Following the recommendations of standards IEC 61000-4-

7 [17] and IEEE 1459-2010 [18], along with expert knowledge in the field of the impact of 
energy consumers, 168 steady state features were selected for further analysis. 

 

2.2. Selection of Identifying Features 

The goal of feature selection is to reduce the dimensionality of the data set describing devices. 

The selection is based on an optimising criterion that aims to decrease the size of the data set 

without losing its identification properties. If we denote the set of device classes as 
D = {d1, …, dk} and the set of identifying features that describe these classes as A = {a1, …, an}, 

we can build a set 𝑪 (1) 

 

𝑪 = {𝒄𝒊: 𝒄 ∈ 𝑐𝑜𝑚𝑏(𝑨), 𝑖 = 1,2, . . . , (
𝑛
1
) + (

𝑛
2
) + (

𝑛
𝑛
)}   (1) 

 

including all possible feature combinations. The selection leads to finding in this set the optimal 

feature combination according to the adopted criterion 𝑪∗, such that [5] 

 
(∀𝒅 ∈ 𝑫)(∃𝒄∗ ∈ 𝑪)(∀𝒄 ∈ 𝑪)(𝒇:𝑨 →𝑫)((𝒇(𝒄∗) ≥ 𝒇(𝒄))  (2) 

 
Four different feature selection methods were considered in the research, utilising various 

criteria for feature selection: the Boruta algorithm, the ReliefF method, the mRMR method 

(min. Redundancy – Max. Relevance), the author's method using feature surroundings, and the 
nNmRMR (nearest Neighbours – min. Redundancy – Max. Relevance) information measures. 

 

The Boruta algorithm 

The Boruta algorithm is a wrapper-type method that enlarges the set of features by adding 
variables that are permutations of the input parameters. These features are classified using the 

random forest method. The relevance of a feature is measured by the loss of classification 

accuracy caused by a random permutation of the values that describe the class. This is 
calculated separately for all trees in the forest that use a given feature for classification. Then, 

the average value and standard deviation of the loss of accuracy are calculated. An alternative 

measure of relevance is the Z-score, which is calculated by dividing the mean loss of accuracy 
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by its standard deviation. Although the Z score is not directly related to the statistical relevance 

of the feature returned by the random forest algorithm, this indicator has been adopted as a 

measure of the relevance of the features in the Boruta algorithm [21]. Table 1 presents a set of 
features deemed significant by the Boruta algorithm. 

 
Table 1. Feature comparison selected using the Boruta method. 

 

Feature of an electrical signal 
Mean 

Relevance 

Median 

Relevance 

Min 

Relevance 

Max 

Relevance 

Norm 

Hits 

I - current 10.60 10.66 8.62 12.02 1.00 

Uh - higher harmonic voltage 5.32 5.30 4.07 6.69 1.00 

Ih - higher harmonic currents 7.43 7.39 6.47 9.02 1.00 

THDi - total harmonic histortion of current 7.54 7.50 6.63 8.64 1.00 

CFi - current crest factor 8.02 8.04 6.46 9.42 1.00 

P - active power 9.82 9.86 8.41 11.43 1.00 

P1 - fundamental harmonic of active power 9.75 9.72 8.22 11.11 1.00 

Ph - higher harmonics of active power 7.28 7.28 5.19 8.99 1.00 

Q - reactive power 11.16 11.22 9.46 12.81 1.00 

Q1 - fundamental harmonic of reactive power 11.16 11.22 9.68 12.56 1.00 

Qh - higher harmonics of reactive power 7.14 7.14 5.79 9.00 1.00 

S - apparent power 10.33 10.34 9.10 11.90 1.00 

S1 - fundamental harmonic of apparent power 10.35 10.30 9.06 11.82 1.00 

Sh - higher harmonics of apparent power 7.42 7.41 6.34 8.44 1.00 

PF - power factor 10.31 10.33 9.14 11.39 1.00 

PF1 - power factor of fundamental harmonic 10.26 10.23 8.83 11.66 1.00 

PFh - power factor of higher harmonics 6.79 6.83 5.36 8.21 1.00 

P1, P2, P3, P5, P7, P9, P11, P13, P15 - active power harmonics 4.155.52 4.365.54 2.334.25 5.626.76 0.941 

Q1, Q2, Q3, Q5, Q7, Q9, Q15, Q17, Q19 - reactive power harmonics 3.319.91 3.228.90 1.277.42 4.9810.31 0.721 

I1 – I50 - current harmonics 3.4410.72 3.4010.72 1.029.27 4.6012.20 0.781 

 

The ReliefF algorithm 

The ReliefF algorithm is based on the analysis of feature neighbourhoods. Its essence lies in 

promoting features whose neighbours belong to the same class and discriminating against those 

who describe other classes. This allows us to determine a measure of each feature's relevance 

for class description. The relevance measure wf for a feature in the ReliefF method is determined 
for observations collected in an n-element training set. For each element x in this set, k closet 

neighbours of the same class, called hits h, and k nearest neighbours of other classes, called 

misses m. Then, for each feature, the weight increases by the distance from x to m and decreases 
by the distance from x to h [20]: 

 

𝑤𝑓(𝑚, 𝑘) =
1

𝑛𝑘
∑ (∑ |𝑥𝑖 ,𝑚𝑖𝑗|

𝑘
𝑗=1 − ∑ |𝑥𝑖 , ℎ𝑖𝑗|

𝑘
𝑗=1 )𝑛

𝑖=1    (3) 

 
It was decided that different devices would be described by a different number of features 

and the final training set would constitute the sum of feature sets that describe individual 

devices. For most devices, after the features are arranged according to their relevance, a sudden 

decrease in their values is observed. For each device type, of the min 8 highest relevance are 
included in the identification set. Fig. 1 shows the variability in the relevance of the features 

for selected devices. The navy blue bars denote the range of changes in the relevance of the 

feature depending on the number of considered neighbours, while the red dots indicate the 
median of these values. 

 

 
 

Fig. 1. Descendingly ordered values of the relevance coefficients for individual features of the examined devices. 
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The selected identification features for the monitored devices are the following: I, I1, Ih, I3, I5, 

THDi, CFi, PF1, PF, PFh, P, P1, S1, S, Q, Q1, Q7, Uh, U3, U5, U17 
 

The mRMR algorithm 

The algorithm aims to select the most significant features that are as independent as possible. 
Therefore, features with high correlation with the class are chosen; these features are described 

by the relevance measure; and features with low correlation between themselves are described 

by the redundancy measure. Using the defined measures, the weights of each feature are 
determined for the class description [10]: 

 

𝑤 = max
𝑆

(
1

|𝑆|
∑ 𝐼(𝑠𝑖 , 𝑑)𝑠𝑖∈𝑆 −

1

|𝑆|2
∑ 𝐼(𝑠𝑖 , 𝑠𝑗)𝑓𝑖,𝑓𝑗

)   (4) 

 

where S is the set of features, s is the individual feature, and d is the class. 

The research yielded significant values for the individual features shown in Fig. 2. The 
analysis of the figure indicates that most features are entirely insignificant according to the 

mRMR method, as their relevance coefficient values are close to 0. 

 

 
 

Fig. 2. Values of the relevance coefficient for parameters determined by the mRMR method (in descending order). 

 

The following features were utilised for train and test a classifier used for the identification of 

electrical devices: the reactive power of the first harmonic Q1, the effective current of the first 

harmonic I1, the reactive power of the third harmonic Q3, the effective value of the current of 
the forty-first harmonic I29, the reactive power of the fifth harmonic Q5. 

 

The nNmRMR algorithm 

This paper proposed an original feature selection technology that takes into account information 

about the feature's environment and its informational value. Its implementation is described 

below: 
1. The selected features according to the criterion of the nearest neighbourhood, following the 

principle that the feature belongs or does not belong to the device: 

a. the matrix containing features describing operating electrical devices along with device 

identifiers is defined: 
 

𝐴 = [

𝐴1

𝐴2

⋮
𝐴𝑘

],   𝐴𝑖 =

[
 
 
 
 
𝑎1,1

𝑖 𝑎1,2
𝑖 … 𝑎1,𝑝

𝑖  𝑖

𝑎2,1
𝑖 𝑎2,2

𝑖 𝑎2,𝑝
𝑖  𝑖

⋮
𝑎𝑛,1

𝑖
⋮

𝑎𝑛,2
𝑖

…

⋮       𝑖
𝑎𝑛,𝑝

𝑖 𝑖 ]
 
 
 
 

    (5) 

 

where: 𝐴 – matrix of features and identifiers for all types of devices, 𝐴𝑖 – matrix of features 

and the value of the identifier of the device 𝑖-th, 𝑎𝑛,𝑙
𝑖  – 𝑙-th feature of the 𝑛-th instance of 

the device with the identifier 𝑖, 𝑖 – identifier of the 𝑖-th device, 𝑘 – number of device types, 

𝑝 – number of parameters that describe devices; 

b. divide the data set repeatedly into two subsets according to the criterion of affiliation of 
electrical equipment. For this purpose, separate k matrices, each dedicated to a different i-

th device according to the scheme that the i-th device is described by a different identifier 
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than the other devices: 

 

𝐶𝑖 = [𝐴
𝑖

𝐵𝑖
],   𝐵𝑖 =

[
 
 
 
 
 𝑎1,1

𝑗≠𝑖
𝑎1,2

𝑗≠𝑖
… 𝑎1,𝑝

𝑗≠𝑖
 𝑗

𝑎2,1
𝑗≠𝑖

𝑎2,2
𝑗≠𝑖

𝑎2,𝑝
𝑗≠𝑖

 𝑗

⋮

𝑎𝑚𝑗,1
𝑗≠𝑖

⋮

𝑎𝑚𝑗,2
𝑗≠𝑖

…

⋮       𝑗

𝑎𝑚𝑗,𝑝
𝑗≠𝑖

𝑗]
 
 
 
 
 

   (6) 

 

where: 𝐶𝑖  – matrix of features of the i-th device with binary identifiers, 𝐴𝑖  – matrix of 

features and the identifier value of the 𝑖th device, 𝐵𝑖  – matrix of features and identifiers of 

devices different from the 𝑖th device, 𝑖 – identifier of the selected device, j – identifier of 

the remaining devices, 𝑚𝑗 – number of instances of the 𝑗-th device; 

c. the implement feature selection by independently determining, for each device, the 

relevance coefficients of the parameters based on the feature neighbourhood: 

 

𝑊𝑖 = [𝑤1
𝑖 , 𝑤2

𝑖 … 𝑤𝑝
𝑖 ]     (7) 

 

where: 𝑊𝑖– matrix of feature relevance describing the operation of the device with the 

identifier 𝑖, 𝑤𝑙
𝑖 – relevance of the 𝑙th feature in identifying the device with the identifier 𝑖. 

2. The eliminate redundant features by adjusting the relevance coefficients of correlated parame-

ters. For each of the vectors 𝑊𝑖, calculate the coefficient values according to the relationship: 

 

∀(ℎ = 1…𝑝) (∀(𝑙 = 1…𝑝)(∀(𝑤ℎ
𝑖 < 𝑤𝑙

𝑖), 𝑤ℎ
𝑖 = 𝑤ℎ

𝑖 (1 − 𝜂|𝑟ℎ,𝑙|)))  (8) 

 

where: 𝜂 is the correction coefficient, 𝑟 – correlation value between the ℎ-th and 𝑙-th 
parameters. 

From each vector 𝑊𝑖 containing features describing the 𝑖-th device, select the features with 

the highest values: 
 

𝐴𝑚𝑎𝑥
𝑖 = [𝑎1

𝑖 , 𝑎2
𝑖 … 𝑎𝑞

𝑖 ]    (9) 

 

where: 𝑞 – selected number of parameters. 

3. The set of features selected based on the information value of the feature (mRMR) is 
determined: 

 

𝐴𝑚𝑅𝑀𝑅 = 𝑚𝑅𝑀𝑅(𝑎1 , 𝑎2 … 𝑎𝑘 )     (10) 

 
4. The addition to the obtained set of features is the selection of features based on their 

information value (mRMR): 

 

𝑉 = ⋃ 𝐴𝑚𝑎𝑥
𝑖 + 𝐴𝑚𝑅𝑀𝑅

𝑘
𝑖=1       (11) 

 
The application of the method resulted in the extraction of the following features: Q, I, PFh, U3, 

Q7, PF1, Ih, I1, Q1, Q3, I29, and Q5. 

 

2.3. Classifiers Used for Identification 

Four types of artificial intelligence-based classifiers were used to identify electrical devices: 
decision trees, random forests, neural classifiers, and custom hybrid classifiers. 

Identification using trees (DT) was implemented using binary trees adapted for multiclass 

decisions. The CART algorithm was applied to build the tree, which uses the binary division of 

input elements for its operation. In each tree node, the data set was divided into two subsets and 
the data division was carried out using the Gini criterion, which divides the input set into as 

homogeneous a result set as possible. Other tree parameters were experimentally selected. 
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Random forests (RF) are a set of many individual decision trees. All decision trees that make 

up the forest use the same set of data, but they use differently selected variables to achieve the 

goal. This results in an improvement in classification quality. The applied forest algorithm used 
the AdaBoostM2 algorithm, which divides the input space, considering the distribution of the 

probability of drawing examples during learning and improving the final classification quality. 

The binary neural selector (BNS) was built on the basis of artificial neural networks, serving 
as a preliminary classification module supported by a decision-making module. The 

preliminary classification module consists of 11 feedforward artificial neural networks, with 

the number of networks equal to the number of identified devices. Each network is used to 

identify one device, providing a type of response that indicates whether the given feature vector 
corresponds to a particular device. The networks have identical structures and consist of an 

input layer with a length corresponding to the length of the input vector, two hidden layers, and 

an 11-element output layer. Due to the lack of analytical methods that allow determination of 
the number of neurones in the hidden layers, this selection was made experimentally. The 

neurones in the hidden layers had a tangent transfer function, whereas the output neurones had 

a linear function. The Levenberg–Marquardt method was used for network training due to its 
efficiency and ability to learn quickly. The decision-making block determines the final response 

of the system. Its operation is based on the following principle: if only one network indicates 

the device, it is recognized, and such a response is provided at the system's output. If more than 

one network points to the recognition of the device, the decision-making module compares the 
response values. The device assigned to the network that provided the highest response value 

is indicated as the classifier's response. 

 

 
 

Fig. 3. Hybrid classifier scheme and algorithm decision making by a hybrid classifier. 

 

The hybrid classifier (HC) consists of three subclassifiers: the BNS, DT, and RF, as shown 

in Fig. 3. The structure of the subclassifiers is identical to the structure described above. The 
operation of the hybrid classifier involves voting by the subclassifiers: if the decisions of the 

subclassifiers are consistent, the hybrid classifier accepts their decisions. When inconsistent 

responses occur among the subclassifiers, their decisions are weighted and the weight values 
are predicted based on the reliability assessment of the responses (as shown by arrow 4). The 

measure of reliability is the value of the Precision indicator obtained during the training and 

testing process of the subclassifiers. The hybrid classifier makes a decision consistent with the 
decision of the subclassifier that guarantees the highest predicted reliability value. 

 

3. Identification of electrical devices by softsensors 

Using the selection methods discussed in part 2.2, four sets of identification features were obtained, 

which together with the four classifiers presented in part 2.3, enabled the construction of 16 soft 

sensors. Softsensor tests were carried out using 10-fold cross-validation. The quality of device 
identification was determined using indicators: Precision, Recall, F1-score and Accuracy. 

Algorithm: Decision making by a hybrid classifier 

Input:  DT, RF, BNS       //classifier decisions 

DTPrec, RFPrec, BNSPrec    //classifiers precision 

Output:   HC //hybrid classifier 

decision 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

if DTPrec ≥ RFPrec &DTPrec ≥ BNSPrec 

 HC  DT 

elseif RFPrec ≥ DTPrec   & RFPrec ≥ 

BNSPrec 

 HC  RF 

else 

 HC  BNS 

end 
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3.1. Analysis of device identification quality by softsensor 

This section presents analyses on the quality of identification of individual devices. The tests 
assess the information stability of selected features, understood as insensitivity to changes in the 

classifier and the type of identified device. For each device, the average values of the coefficients 

used for its assessment were determined, depending on the applied feature selection method. The 
average was determined based on the individual indicator values obtained for the four classifiers 

discussed in part 2.3. The range of value changes resulting from identification by different 

classifiers is shown using scatter bars (Fig. 4). Fig. 4a shows the average values of the indicators 
(for all classifiers) depending on the feature selection method used. Fig. 4b shows the average 

values of the indicators (for all selection methods) depending on the classifier used. Analysis of 

the charts indicates that TV sets and laptops are the least well identified, followed by iron and 

electric kettles. Moreover, it is difficult to identify a feature selection method that allows for 
optimal identification results. In the case of some devices, the selection method clearly influences 

the identification results. Analysis of the obtained results revealed the following: 

• the quality of identification of individual devices depends on the selected set of features, 

• the informational value of the selected feature sets is not stable, showing sensitivity to 

changes in the classifier and the type of identified device. 
 

  
 

Fig. 4. a) Average values of identification quality indicators and the range of their changes depending on the applied 
feature selection method, b) average values of identification quality indicators and the range of their changes 
depending on the classifier used 

 

 
 

Fig. 5. Confusion matrices for the best feature selection methods and different classifiers. 

 

The tests carried out allow for the construction of confusion matrices for different feature 

selection methods and different classifiers, demonstrating the quality of identification of individual 

i) Decision trees: Acc = j) Random Forest: Acc = k) Binary Neural Selector: Acc = l) Hybrid Classifier: Acc =

Keatle 91,7 0,5 7,8 90,2 9,8 89,0 0,7 0,1 1,0 1,1 0,3 1,0 6,8 94,3 0,2 5,6

Laptop 73,1 0,5 0,2 26,3 80,1 0,2 19,8 82,7 0,9 0,1 0,5 0,8 0,3 14,8 78,4 0,2 21,4

Soild. Iron 4,4 93,6 2,0 99,0 1,0 0,2 98,1 1,4 0,2 0,1 99,9 0,1

Microwave 78,6 21,4 83,8 16,2 2,5 1,4 1,6 83,9 1,7 0,6 5,5 0,6 0,3 1,9 84,2 15,8

Mixer 0,2 3,1 96,8 0,8 98,2 1,0 0,2 6,6 92,6 0,1 0,3 0,2 0,4 99,6

Hoover 0,9 98,9 0,2 0,3 98,7 1,0 1,0 0,6 0,9 0,5 0,9 88,9 3,4 0,3 2,6 0,9 0,1 0,1 99,3 0,5

Dryer 0,7 0,2 91,7 3,7 3,7 0,5 0,2 93,4 5,0 1,0 0,1 0,1 0,2 2,5 85,5 0,0 1,1 10,5 0,2 0,4 0,1 93,7 2,2 3,5

Grinder 0,1 8,8 0,1 0,2 90,8 0,2 0,2 2,2 97,5 1,0 3,7 0,2 6,6 1,5 5,4 79,2 2,1 0,2 0,2 0,3 0,2 99,5

Toester 2,2 97,8 1,0 99,0 0,3 99,7 1,0 99,0

TV 18,8 0,4 80,9 9,9 90,1 5,4 0,2 0,4 0,1 0,8 0,1 93,1 9,5 0,3 0,1 90,1

Iron 15,1 1,2 7,3 76,5 16,8 0,1 9,0 74,1 13,2 0,1 9,6 0,2 76,9 11,6 0,7 8,6 79,0

92,0 88,3 93,0

m
R

M
R

89,2
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devices (Fig. 5). The numbers on the diagonal of the matrix express the percentage of correct 

classifications. Analysis of the matrix revealed that some devices were confused due to similar work 

characteristics; this is shown in orange. The values of the indicators that reflect the quality of 
identification of other devices were satisfactory and fell within the range of 90-100% (Fig. 5). 

 

3.2. Evaluation of classifiers and data selection to choose the optimal softsensor 

The values of Recall indicator collected in Table 2a allow us to assess how the selection method 

affects the quality of identification. A detailed analysis of the collected data clearly showed that 
selecting universal signatures through direct use of data obtained from the examined feature 

selection methods was not possible. Globally, toasters are the most accurately identified devices 

(97.8%), and their identification depends to a small extent on the selection method used, 

indicating that many features associated with the operation of this device have informative 
properties. The opposite situation is observed for laptops and TV sets, which are often confused 

due to similar feature values and the resulting low identification value. 

 
Table 2. Recall (a) and Precision (b) indicator values according to the selection and identification method 

 

  
 

The results confirm that the quality of identification of individual devices depends on the selec-

ted feature selection method (signature selection) and the applied identification method. The set of 
features closest to optimal in terms of Recall indicator is obtained using the mRMR method. 

The values collected in Table 2b for the Precision indicator provide information on the 

identification reliability of the devices and allow the assessment of whether the reliability of 
the identification features depends on the method of feature selection. Like for identification 

quality, it is not possible to establish an optimal vector of signatures in terms of identification 

reliability using only one selection method. The set of features closest to optimal in terms of 

Precision indicator is obtained using the mRMR method. 
 

Table 3. Ranking of classifiers and feature selection methods based on Accuracy and F1 indicators. 

 

 
 

Table 3 contains the classification of classifiers based on accuracy and F1 score. It is worth 
noting that, regardless of whether the criterion is Accuracy or F1-score, the order remains 
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DT 81,0 69,8 91,6 99,2 89,5 90,5 88,5 97,8 94,3 66,4 68,8 85,8
RF 86,3 77,6 91,2 98,9 91,5 91,5 90,0 90,1 98,7 72,9 68,6 87,0
BNS 100,0 56,7 78,4 96,0 92,0 98,2 94,7 97,5 92,8 55,1 91,3 86,6
HC 92,9 73,9 92,2 97,5 97,8 94,1 90,3 98,7 99,1 69,9 72,2 89,0
DT 93,7 69,0 78,1 95,4 91,0 92,0 88,6 97,4 94,2 72,1 88,9 87,3
RF 92,2 77,4 76,8 96,6 93,3 88,0 94,8 90,4 99,5 69,2 87,4 87,8
BNS 98,3 71,4 84,3 96,8 100,0 96,2 85,0 97,6 99,7 80,2 83,0 90,2
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DT 91,7 73,1 93,6 78,6 96,8 98,9 91,7 90,8 97,8 80,9 76,5 88,2
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BNS 85,4 71,7 77,0 95,3 84,1 91,0 86,9 95,8 93,3 78,1 79,6 85,3
HC 89,1 78,1 89,8 97,4 97,9 93,7 92,9 98,4 96,1 82,9 86,6 91,2

82,9 72,5 93,0 95,0 92,3 96,8 87,5 92,5 91,5 73,1 79,4 86,9
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Accuracy 
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[%]
1 Hybrid classifier mRMR 93,0 92,6
2 Random Forests mRMR 92,0 91,5
3 Hybrid classifier nNmMRM 91,4 91,5
4 Random Forests nNmMRM 90,8 90,3
5 Binary Neural Relieff 90,5 90,0
6 Hybrid classifier Relieff 90,0 89,4
7 Hybrid classifier Boruta 89,4 88,7
8 Decision tree mRMR 89,2 88,5
9 Random Forests Relieff 88,5 87,6
10 Binary Neural mRMR 88,3 88,0
11 Decision tree Relieff 87,7 87,1
12 Random Forests Boruta 87,7 86,8
13 Binary Neural Boruta 87,7 86,6
14 Decision tree Boruta 85,8 85,1
15 Binary Neural nNmMRM 85,6 85,0
16 Decision tree nNmMRM 84,9 85,5
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practically unchanged (except for positions 9-10 and 15-16). When classifiers are evaluated, 

the hybrid classifier and the mRMR selection method should be rated highest. 

 

4. Conclusions 

The presented research was carried out on the basis of data representing different power supply 

environments collected using the precise energy quality analyser. Due to the large number of 
high-frequency measurements, 168 potential information features were extracted, including 

current harmonics, active and reactive power, crest factor, and power factor, which were used 

to project a softsensor for the needs of NILM. 
This study investigated the use of dedicated classifiers in an optimised feature space as a 

softsensor for non-intrusive device monitoring. Research focused on the selection of optimal 

features and classifiers to improve the accuracy and reliability of NILM systems. 
The implementation of four feature selection methods Boruta, ReliefF, mRMR, and a 

hybrid selection method allowed for a comparative analysis of their efficiency in reducing 

dimensionality while preserving identification accuracy. Additionally, the study evaluated four 

classification algorithms: decision trees, random forests, artificial neural networks, and a hybrid 
classifier. 

Experimental results demonstrated that feature selection methods have a notable impact on 

the quality of identification, with the mRMR method showing to be the most effective in 
balancing redundancy and relevancy. Furthermore, among the classifiers, the hybrid model that 

incorporating decision trees, random forests, and neural networks achieved the highest 

performance in terms of precision, recall, F1-score, and accuracy. 
Key findings indicate that the selection of features using optimisation methods and 

integrating them with an appropriately chosen classifier significantly improve device 

identification performance.  

In conclusion, the findings of this study reinforce the relevance of intelligent feature 
selection and its integration into NILM softsensors. The proposed methodology provides a solid 

foundation for future advancements in nonintrusive monitoring, potentially contributing to 

more efficient energy management and device monitoring solutions. 
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