

How Artificial Intelligence Changes Medical Diagnosis, Treatment, and Education

Mirjana Ivanović

University of Novi Sad, Faculty of Sciences, Novi Sad, Serbia mira@dmi.uns.ac.rs

AGENDA

1 Introduction

- 2 Quality Data Aggregation in Health Domains
- 3 Data AI/ML Models Development Use of Models
- 4 Some Examples
- 5 Possibilities for Medical Education
- 6 Conclusions

CLINICAL DATA - https://guides.lib.uw.edu/hsl/data/findclin

- Vital resource collected during the course of ongoing patient care or as part of a formal clinical trial program
- Six major types:
- Electronic health/medical records (EHR/EMR)
 - The purest type of electronic clinical data, obtained at medical facility, hospital, clinic,...
 - administrative/demographic info, diagnosis, treatment, prescription drugs, laboratory tests, physiologic monitoring data, hospitalization, quality of life parameters (QoL), etc.
- Administrative data, Claims data, Patient / Disease registries,
 Health surveys, Clinical trials data

Health terminology - "language" used to code entries in EHRs - ICD-9, ICD-10, IDC-11, LOINC, CPT, SNOMED CT, ...

- EHRs terminology key for interoperability between different systems and integrating data.
- exchange data between systems compatibility of codes between systems.
- standards support mapping of various vocabularies and smooth "communication" between systems
- SNOMED CT Systematized Nomenclature of Medicine Clinical Terms a comprehensive, computerized healthcare terminology.
 - SNOMED CT also an ontology defines concepts: causes of diseases, the part of the body they affect and how they can be diagnosed ...
 - o medical standard for: diagnosis, clinical findings, symptoms, procedures, body structures, and organisms, ..., inter-relationships between concepts.

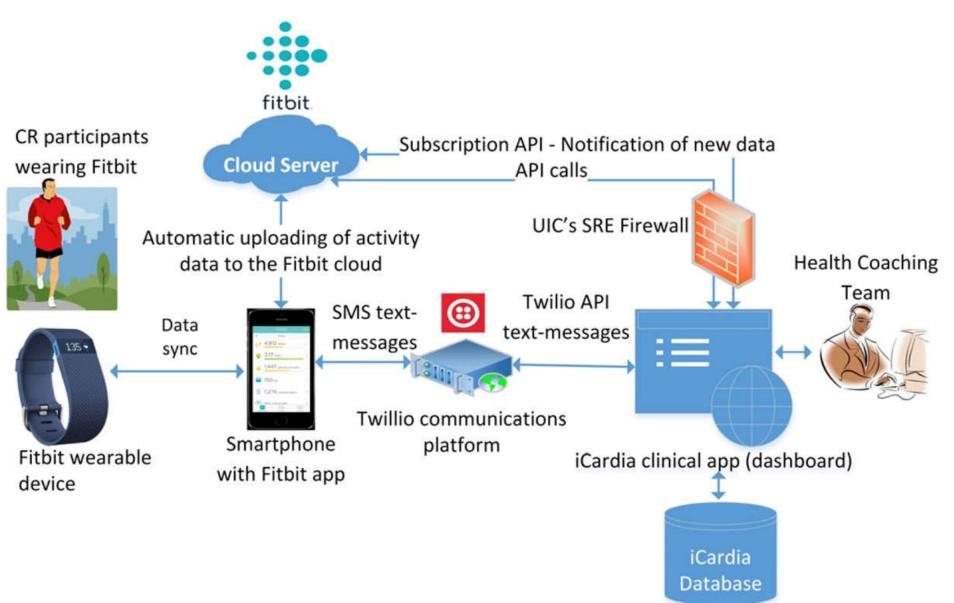
Health data models from international standards

- HL7 FHIR Health Level 7, Fast Healthcare Interoperability Resources
 - O Resources (6 major categories) for: structuring information from a patient, an adverse reaction, a procedure and an observation, ..., (clinical, identification, workflow, financial,...)
 - O data model is oriented to noSQL the content of the FHIR resources can be represented in XML, JSON, Turtle, and other formats
 - The data model include interoperability artefacts composed of a set of modular components/ "Resources".

WEARABLE DEVICES - additional sources for collecting health/medical data

- Personal health record (PHR), Remote patient monitoring (RPM)
- Wearable computer/device (wristwatches, smartphones, small mobile computers) - widely used Google FitBit
 - o collect data to estimate a variety of metrics: no of steps, calories burned, weight, heart rate, sleep stages, active minutes,...
 - o shows individual's statistic and progress used with EHR and integrated/aggregated with other patient's data
 - personalized medicine help in adjusting patient's therapy in a smart way
 - o predictive analytics can ensure the safety of patients by alerting medical personnel immediately.

Example: iCardia platform components and architecture - innovative mHealth platform for remote physical activity monitoring and health coaching of cardiac rehabilitation patients (https://www.evl.uic.edu/pubs/2285)



AGENDA

- 1 Introduction
- 2 Quality Data Aggregation in Health Domains

- 3 Data AI/ML Models Development Use of Models
- 4 Some Examples
- 5 Possibilities for Medical Education
- 6 Conclusions

2 Quality Data Aggregation in Health Domains

DATA AGGREGATION - **combining information** from multiple systems. produce **interconnective**, **shareable information** (sensitive health data)

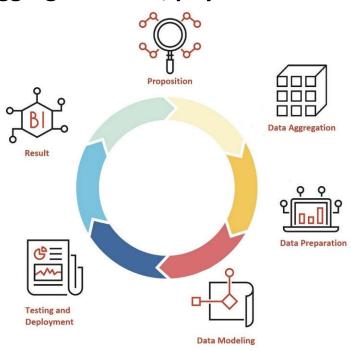
AGREGATED vs INDIVIDUAL DATA

• Individual data - created by patient's/doctor's interaction with the healthcare system, physicians make more effective treatment decisions.

Data of numerous similar cases - anonymized aggregated data, physicians see

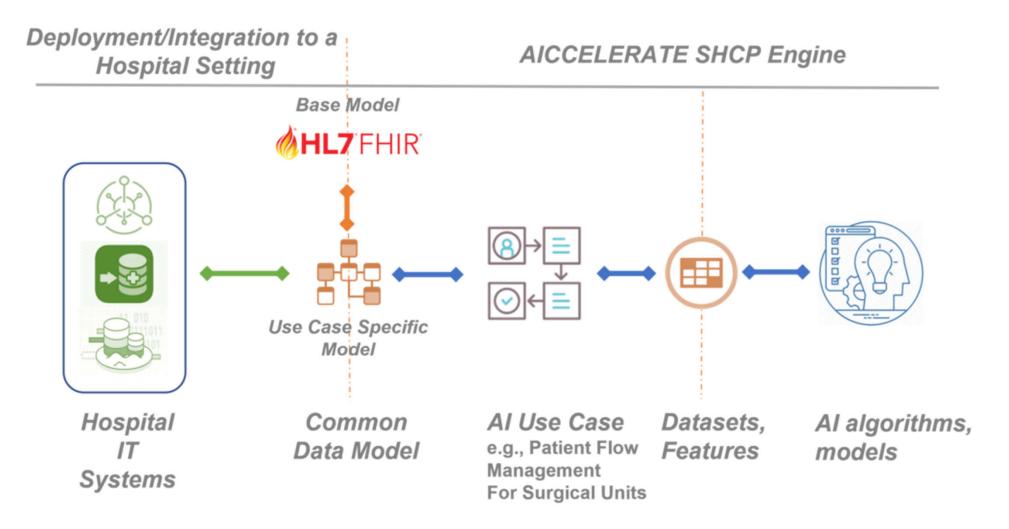
patient data from a **different angle** and **make better decisions**.

- Aggregate management
- important insight for strategic planning and creating health systems.
- by simply increasing the sample size,
 data sharing increases data quality.



2 Quality Data Aggregation in Health Domains

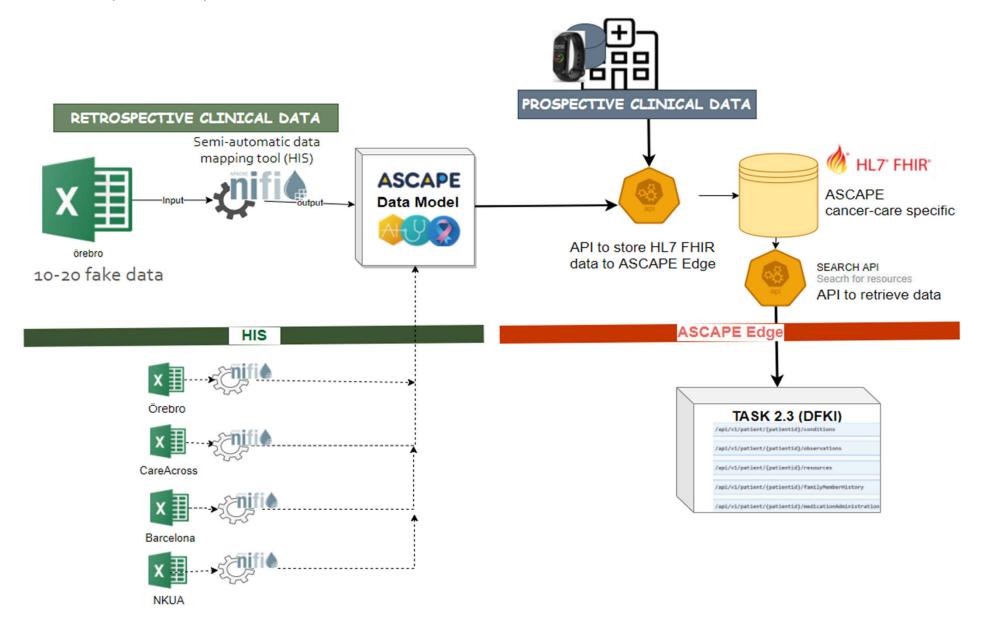
developing, validating, and improving a methodology based on HL7 FHIR, interoperability.



Smart Hospital Care Pathway - https://aiccelerate.eu/health-data-preparation-for-artificial-intelligence-ai/- (H2020)

2 Quality Data Aggregation in Health Domains

<u>ASCAPE H2020</u> developing, validating, and improving a methodology based on HL7
 FHIR, interoperability.



2 Health Data Privacy Preserving

Important privacy preserving techniques

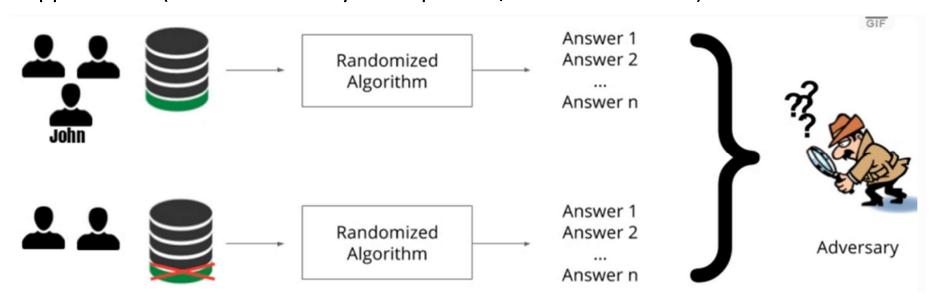
Privacy preserving - crucial in processing personal/patients' health data

- essential to anonymize patients' data could not be discovered at any stage of processing
- main techniques for de-identification of personal info
- K-anonymity, L-diversity, T-Closeness,...
- Differential privacy systematic randomized modification of a dataset or algorithm to reduce information about the single individual.
- Homomorphic Encryption enables arithmetic operations on ciphertexts without decryption, in distributed environments protecting data leakage from client side

2 Health Data Privacy Preserving

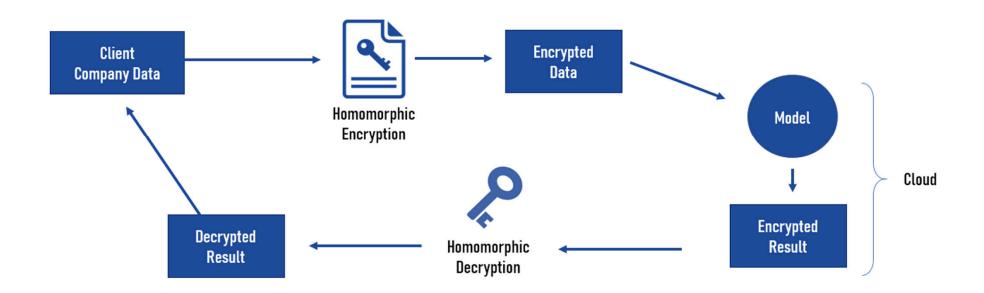
Differential privacy - retaining the global statistical distribution of a dataset while reducing individually recognizable information

- Dataset is differentially private impossible to infer if a specific individual was used for obtaining a result
- Implementations from simple random shuffling of the input data to the introduction of noise to the dataset (Gaussian/Laplacian DP, better interpretability)
- Local DP ensures privacy at the source of the data, also for federated learning applications (data collected by smartphones/wearable devices).



2 Health Data Privacy Preserving

- Homomorphic Encryption connected to Federated Learning Paradigm training is performed without sharing sensitive local data
- Homomorphic Encryption includes multiple types of encryption schemes, different classes of computations over encrypted data.
- Homomorphic refers to homomorphism in algebra: the encryption/decryption functions are homomorphisms between plaintext and ciphertext spaces.

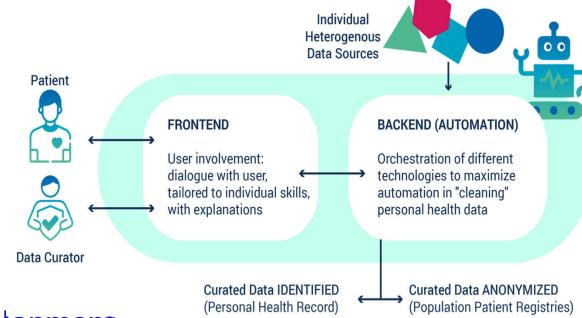


Park, J.; Lim, H. Privacy-Preserving Federated Learning Using Homomorphic Encryption. *Appl. Sci.* **2022**, *12*, 764. https://doi.org/10.6490/app12020764

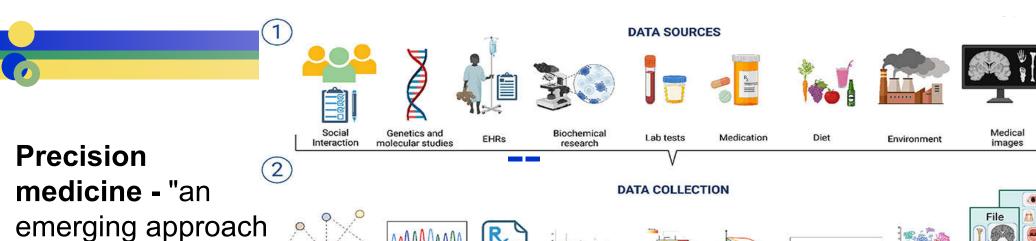
AGENDA

- 1 Introduction
- 2 Quality Data Aggregation in Health Domains
- 3 Data Al/ML Models Development Use of Models
- 4 Some Examples
- 5 Possibilities for Medical Education
- 6 Conclusions

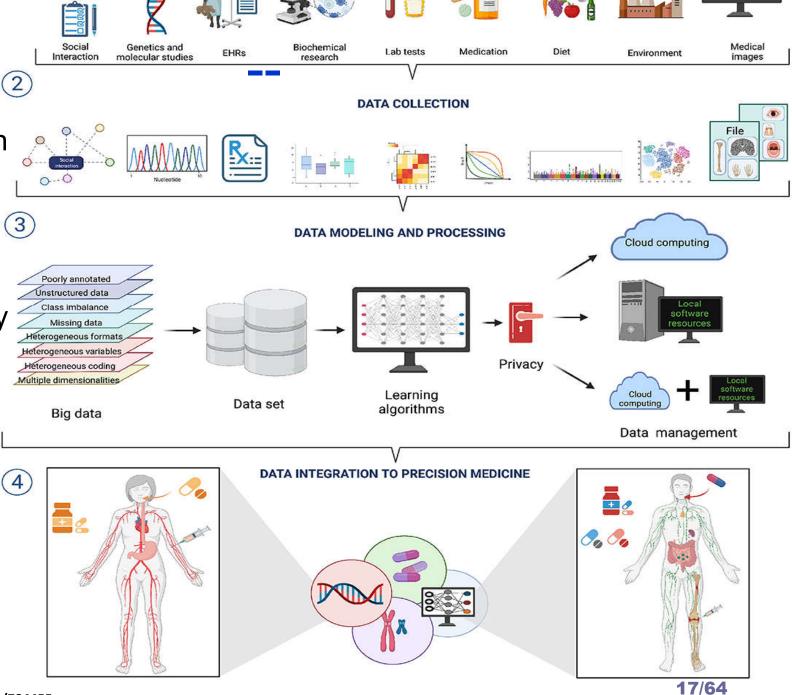
- Medical/Health data Big, Complex, collected from multiple sources
- Data management curation, aggregation, standardized representation, final datasets for AI/ML processing
 - O Data prepared: New features, Imputation of missing data, Outlier detection



- AI/ML Predictive models development
 - o can enhance healthcare experiences for individualshttps://aidava.eu/research/solution
 - enables the **expansion of knowledge** about diseases and treatments
 - leads to an increase of efficiency and effectiveness of medical decisions
 - o predictive data mining => transformation of Medicine from population-based to personalized practice.



medicine - "an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person."



BUILDING PREDICTIVE MODELS - Modeling and evaluation (data are prepared)

- build predictive models
- application of different techniques,
- later the received results should be compared and validated, the model performance are considered,
- final stage use models in real environments, unforeseen data.
- Classification models Different learning algorithms: NB algorithm, KNN (K-nearest neighbors), DT (decision trees), Classification And Regression Trees (CART), bagging CART, C5.0, RF (random forests), Logistic Regression (LR), Artificial Neural Network (ANN), SVM and LDA (LINEAR DISCRIMINANT analysis).

3 Data – AI/ML Models Development – Use of Models BUILDING PREDICTIVE MODELS - Modeling and evaluation

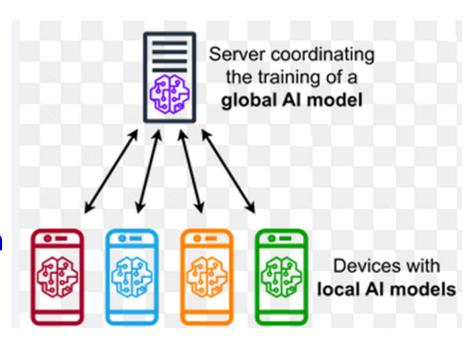
- Regression models –usually used, for example for predicting numeric values, some specific interventions or continuous variable
 - LINEAR (linear regression), RIDGE (ridge regression), LASSO (lasso regression), ELASTICN (elastic net regression), KRIDGE (kernel ridge regression), SVM (regression by support vector machines), RF (regression by random forests), KNN (K-nearest neighbors), ADAB: AdaBoost regression, TFNN: TensorFlow Neural Network
 - O Neural networks (NN), deep learning techniques with a good performance, hard to be interpreted.
 - O Simpler techniques: naive Bayes classifier (NB), linear discriminant analysis (LDA), support vector machines (SVM), tree-based
 - => produce results that are much easier to interpret.

- "traditional AI (ML)" the data are usually concentrated in the data center (for training models).
- However, when large datasets are attacked, the consequences are immeasurable.
- Privacy is a critical concern data are frequently personal, not intended to be shared
- Federated learning (FL) facilitate the distributed training of high-quality models, coordinating multiple clients/devices, preserving the privacy of local datasets.

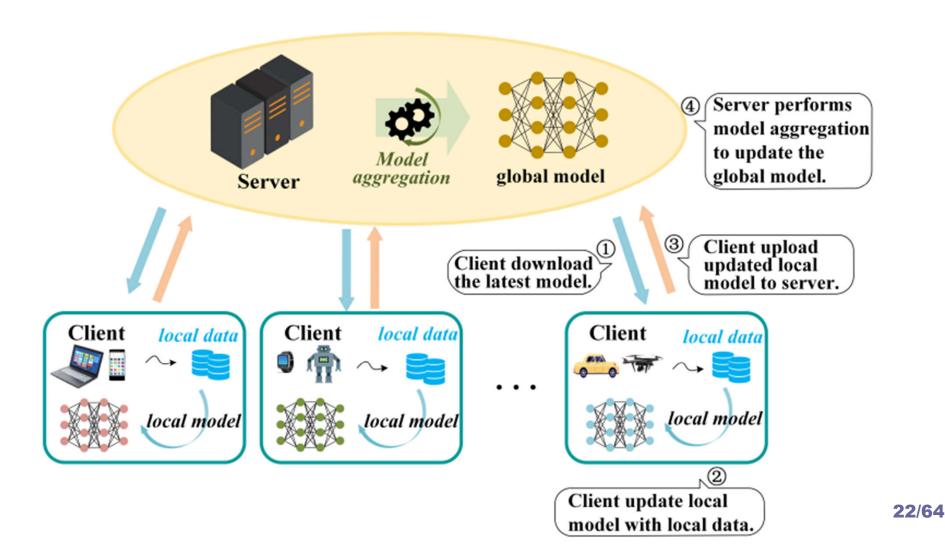
STANTELLES

3 Data – AI/ML Models Development – Federated Learning

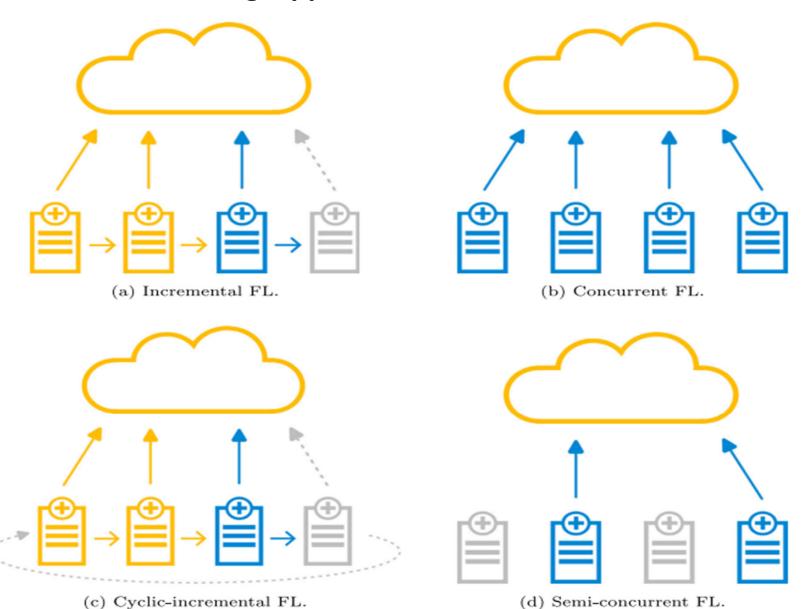
- Federated Learning (FL)
 - <u>Data</u> are (usually collected and) stored at the <u>edge</u>
 - Training local models computation is done on the edge
 - increased privacy
 - eliminated communication overhead from data transfer
 - Train global models on the entirety of the dataset in a distributed manner
 - The learning process is (usually) coordinated by a centralized server



• General FL framework. During the t-th communication round, each client downloads the latest global model from the server for initialization ① and uses its own local dataset for iterative training ②. The updated weights are uploaded to the server ③ which performs model aggregation ④ to generate a new global model. Steps are repeated.



Federated Learning approaches

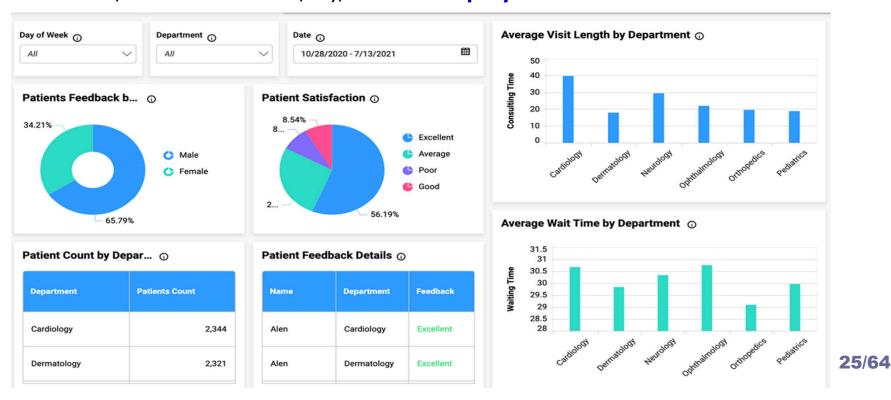


BUILDING PREDICTIVE MODELS – Federated Learning

- NN the most natural model choice for **federated (global) models**:
 - be incrementally updated
- o can be easily averaged by averaging edge weights and biases.
- Two types of predictive problems, federated NN:
 - FNN for regression
 - FNN for (binary) classification
- Modeling and validation schema After preparing the data the next step is building and validating models.

Interpretability of the built models - Explainable Artificial Intelligence - XAI

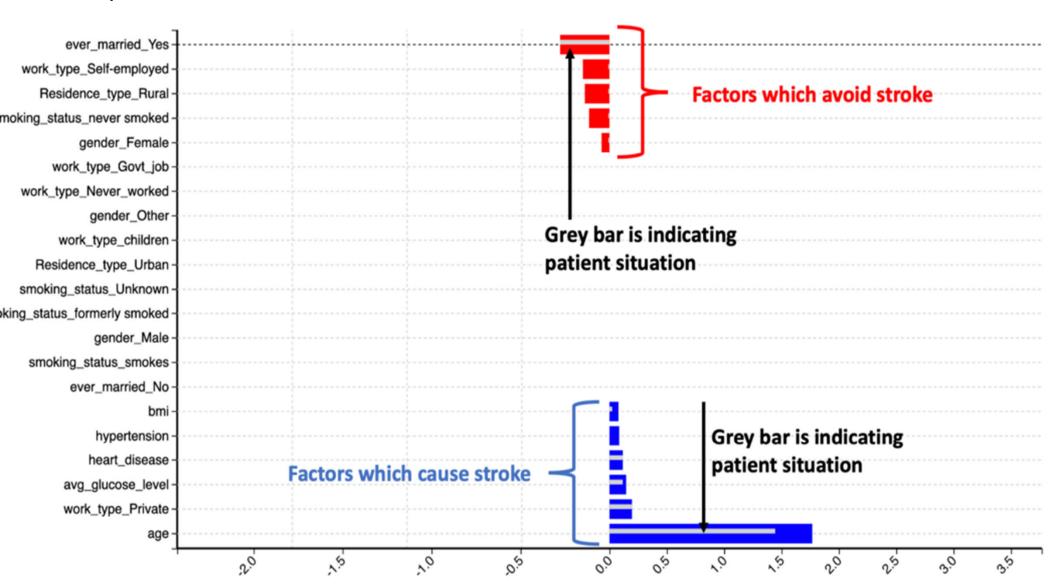
- allows human users to comprehend and trust the results and output of ML algorithms
- describes an AI model characterize model accuracy, fairness, transparency and outcomes in AI-powered decision making
- comprehend and retrace how the algorithm came to a result
- explainability helps developers ensure that the system is working as expected
- explaining with Data Visualisation, Explaining with a ML model (Logistic Regression, Decision Tree, Neural Network, ...), SHAP -SHapley Additive exPlanations



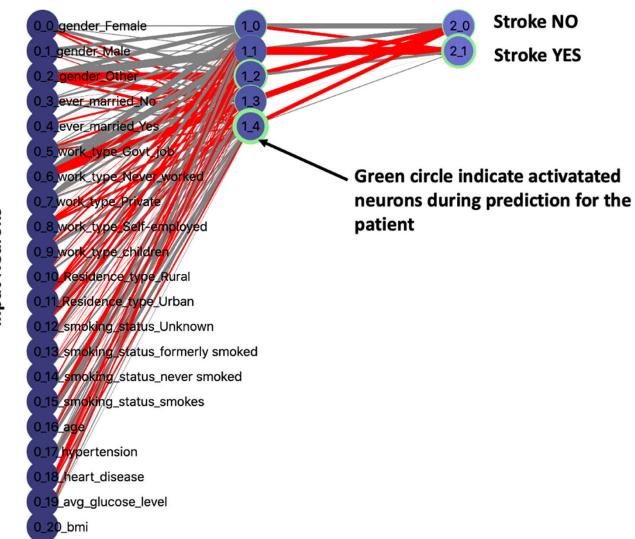
Data Visualisation - EXAMPLE

- take the data which was used for training AI data of patients which suffered a stroke as well as those who did not.
- using visualization techniques analyze the difference between the patients who suffered/did not suffer a stroke, understand the factors that cause a stroke.
- compare with the patient situation help to understand why the patient is at risk.

Explaining with Logistic Regression Model - Y-axis - different factors; X-axis - the importance of the factor for a stroke condition.



 Explaining with NN model - The positive signal, negative signal, green bordered circle - activated neurons during prediction for the patient



AGENDA

- 1 Introduction
- 2 Quality Data Aggregation in Health Domains
- 3 Data Al/ML Models Development Use of Models
- 4 Some Examples

- 5 Possibilities for Medical Education
- 6 Conclusions

EUROPEAN COMMISSION

Directorate-General for Communications Networks, Content and Technology

The Ed Friendrick Programs
to System find Intended
HORIZON 2020

eHealth, Well-Being and Ageing

4 EXAMPLE 1: ASCAPE -Artificial intelligence Supporting CAncer Patients across Europe

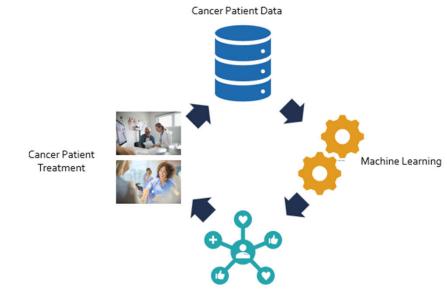
H2020: 2020-2023

Data-driven
ML-based
Support for
Personalized
Healthcare

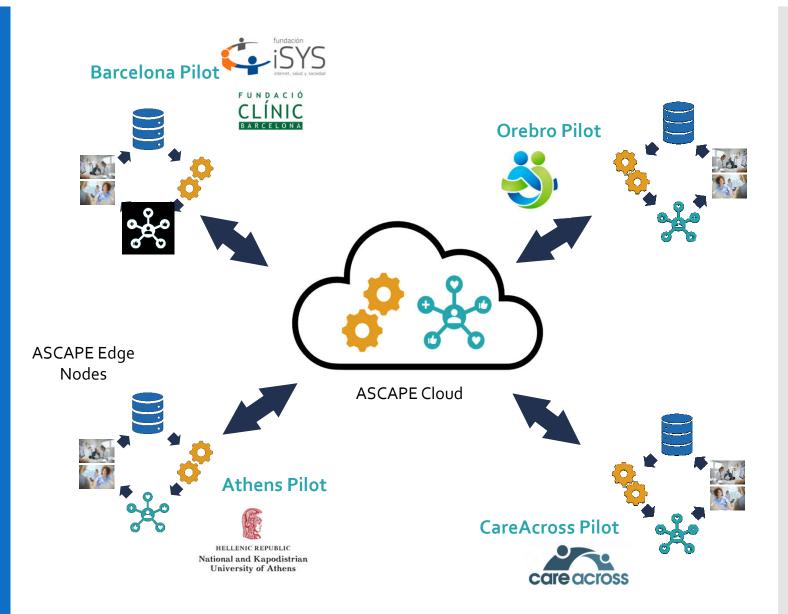
Cancer Patient Data

Machine Learning (ML/AI) Personalized Al Services for QoL

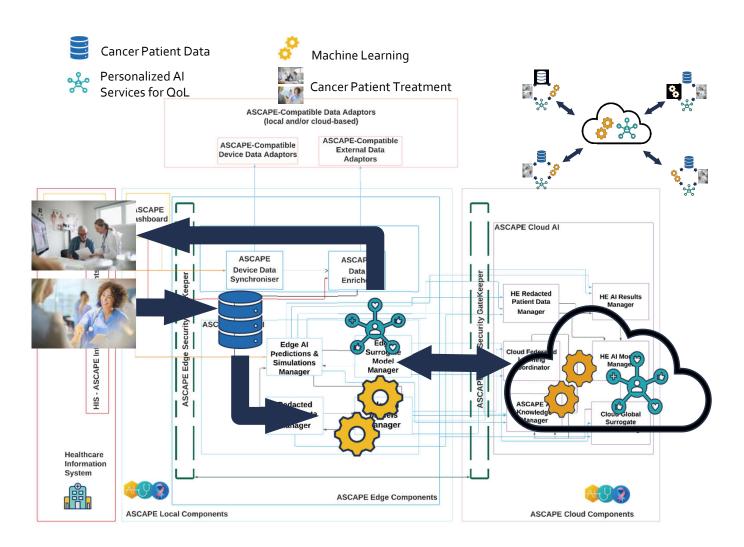
- Cancer Patient Treatment
- 1. Patient Data collection and curation; 2. Machine Learning Model Training
- 3. Clinical value of AI Services. Security of ASCAPE & Privacy of Personal Data



Cooperative. Distributed. Open.



From Goals and Requirements to Architecture



ASCAPE Breast Cancer Data

15 QOL Issues

Anxiety
Body changes (weight+bmi changes)
Cognitive impairment
Depression
Fatigue
Hot flushes
Body image
Dry vagina
Emotional symptoms (Ioneliness)
Insomnia
Joint pain
Local symptoms after surgery
Lymphedema
Neurotoxicity
Sexual dysfunction

Variables

53 Medical Variables (e.g. Patient, BodyStructure, Condition,
FamilyMemberHistory, MedicationAdministration and Observation)
Nutritional
Weather (Temp,. Daylight, etc.)
Activity data from wearables

Interventions

Androgen deprivation treatment manipulation	Progesterone / progestin (prostate)
(prostate)	Promotion of positive familiar and social
Anti-depressants	relationship
Anti-stress techniques: Mindfulness, Yoga	Psychiatric support
Anticonvulsant agents	Paychological cupport
Anxiolytics	Psychological support
,	Acupuncture
Cyproterone (prostate)	
Diet	Antidepressants: duloxetine
Interventions for sleep disturbancies	Scrambler therapy
Movement-based relaxation techniques	Switch to another aromatase inhibitor
Nutrition consultation	Switch from aromatase inhibitor to
Physical activity	tamoxifen
,	Analgesic (NSAID or others)

٠.

36/64

ASCAPE Prostate Cancer Data

12 QOL Issues

Anxiety
Body changes (weight+bmi changes)
Cognitive impairment
Depression
Fatigue
Hot flushes
Bowel dysfunction
Erectile dysfunction
Incontinence
LUTS
Loss of libido
Musculoskeletal pain

Variables

63 Medical Variables (e.g. Patient, BodyStructure, Condition,
FamilyMemberHistory, MedicationAdministration and Observation)
Nutritional
Weather (Temp,. Daylight, etc.)
Activity data from wearables

Interventions

Androgen deprivation treatment	5DE inhibitors
manipulation (prostate)	Androgen deprivation treatment
Anti-depressants	manipulation
Anti-stress techniques: Mindfulness, Yoga	Compression devices
Anticonvulsant agents	Couple counseling
Anxiolytics	Electrical stimulation
Cyproterone (prostate)	Extracorporeal magnetic innervation
Diet	Intracavernosal injections
Interventions for sleep disturbancies	Lifestyle changes
Movement-based relaxation techniques	Other (write down the type)
Nutrition consultation	Pelvic muscle training with or without
Physical activity	biofeedback
, ,	Penile prosthesis or pumps
	Slings and artificial urinary sphincters

D10-Sep-25

Redacted Patient Data Manager

Redacted Patient Data Manager – 4× Pilot sites Edge Node

HAPI FHIR Server - ASCAPE common data model

- MHL7 FHIR structured and SNOMED CT codified
- Data: clinical data + weather + wearables + Nutrition

API for data retrieval from RPDM

Operations against HAPI Server:

- Queries for clinicians
 - No. of female/male patients, patients per pilot, patients with BMI > 30,...
 - Procedures performed between two dates
- Output for other ASCAPE components
 - Gatekeeper + Synchroniser + Enricher + Data Adapters
 - Al algorithms: conversion from JSON to CSV
 - Dashboard: adaptation from JSON to required format

queries	
GET	/api/v1/{pilot}/NumberPatientsByPilot
GET	/api/v1/NumberFemalePatients
GET	/api/v1/NumberMalePatients
GET	/api/v1/NumberPatientsBMIgt30
GET	/api/v1/proceduresByDates/{FromDate}/{ToDate}
data-retrieval	
GET	/api/v1/allData
GET	/api/v1/{pilot}/dataByPilot
GET	/api/v1/{cancerType}/dataByCancerType
GET	/api/v1/{patientid}/patientAllData
GET	/api/v1/{patientid}/patientDataIngestionGroup
GET	/api/v1/{patientID}/patientByID

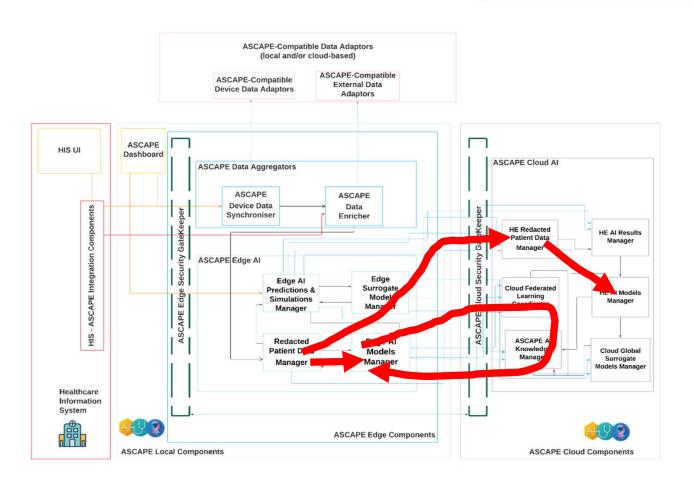
Machine Learning Model Training & Inference

- Analysis of regression/classification algorithms for predictive QoL models
 - 5 classification algorithms (NB is the best), 8 regression algorithms (Lasso is the best), 10 datasets
- Analysis of NN for FL
 - FL simulator training NN for an arbitrary number of edge nodes
 - incremental and semi-concurrent FL
- Missing value inference approaches
 - simple imputer, iterative imputer: performances are not significantly different
- Feature analysis and evaluation of ML models after feature selection

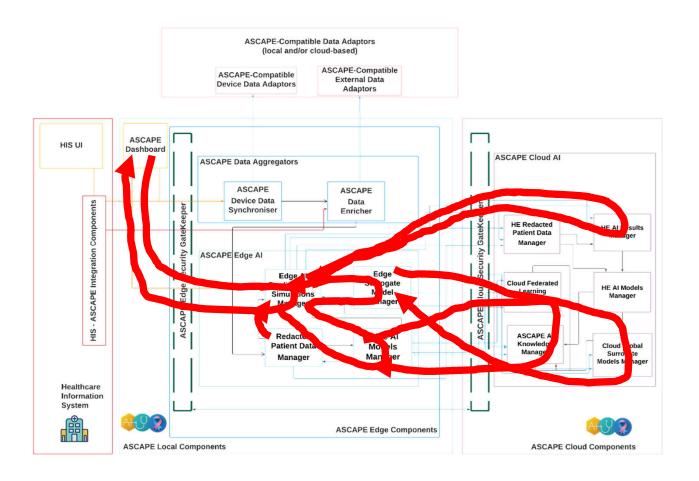
Machine Learning Model Training & Inference

- Analysis of privacy-accuracy parameter for DP algorithm
 - **E parameter** for the addition of Laplacian noise
- Homomorphic Encryption open source encryption libraries (PySyft, PyFHEL, TenSEAL, nuFHE, PHE).
- Al Model training
 - Selection of algorithms for FL
 - training, validation, selection of the best model and inference
- AI Models for Homomorphic Encrypted Data

Data Training and using models

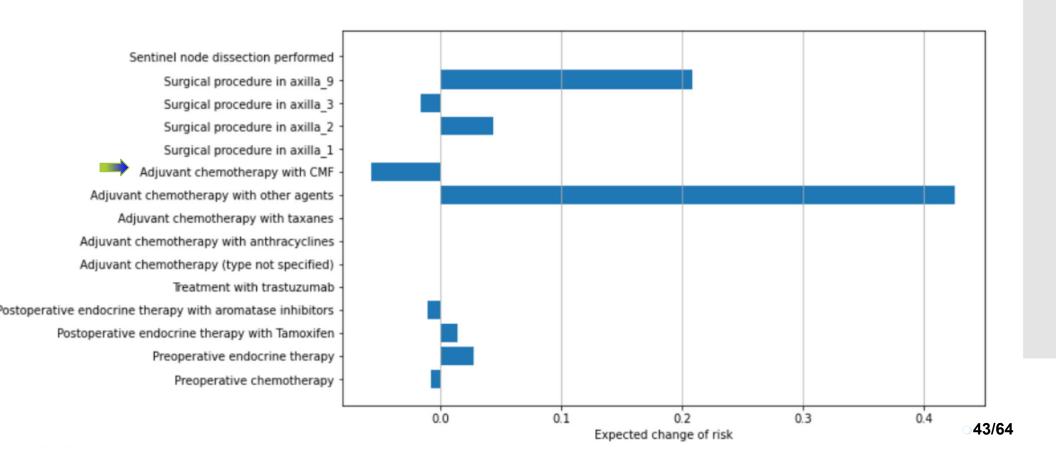


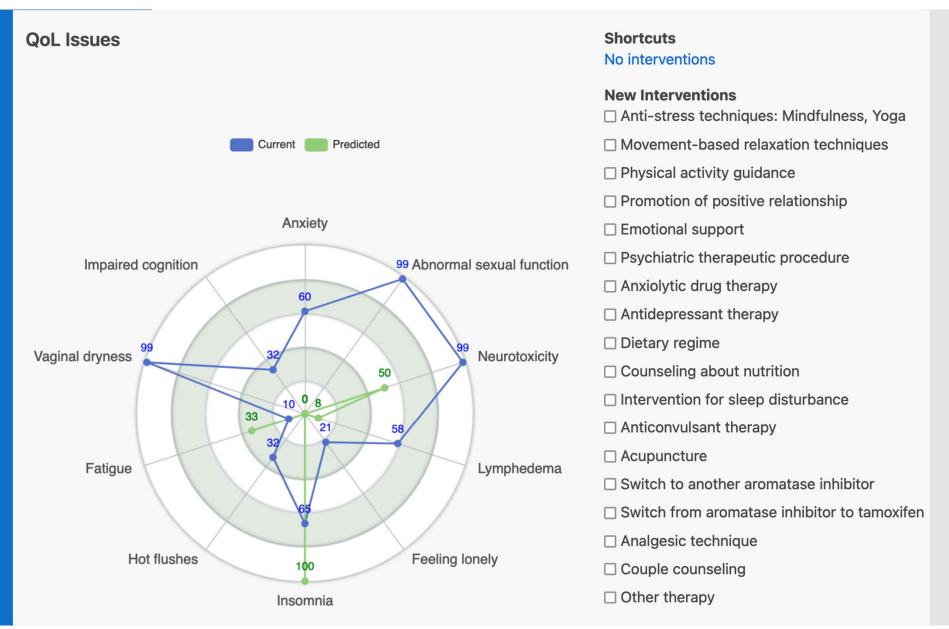
Data Training and using models – Predictions and simulation



Explanations

- Expected change of risk of pain based on Naive Bayes classifier
- Example: "Adjuvant chemotherapy with CMF" is the recommended treatment since it reduces the risk





Goal

4 EXAMPLE 2: Emergency monitoring system (EMS)

- Platform integrates heterogeneous devices, storing and managing the sensed and monitored information
- Assist the patients, help medical professionals in health monitoring (a large number of patients and data at run-time), remote care centers
- Sensors and devices connected to the patient, detect and prevent emergency situations (hospital/home)

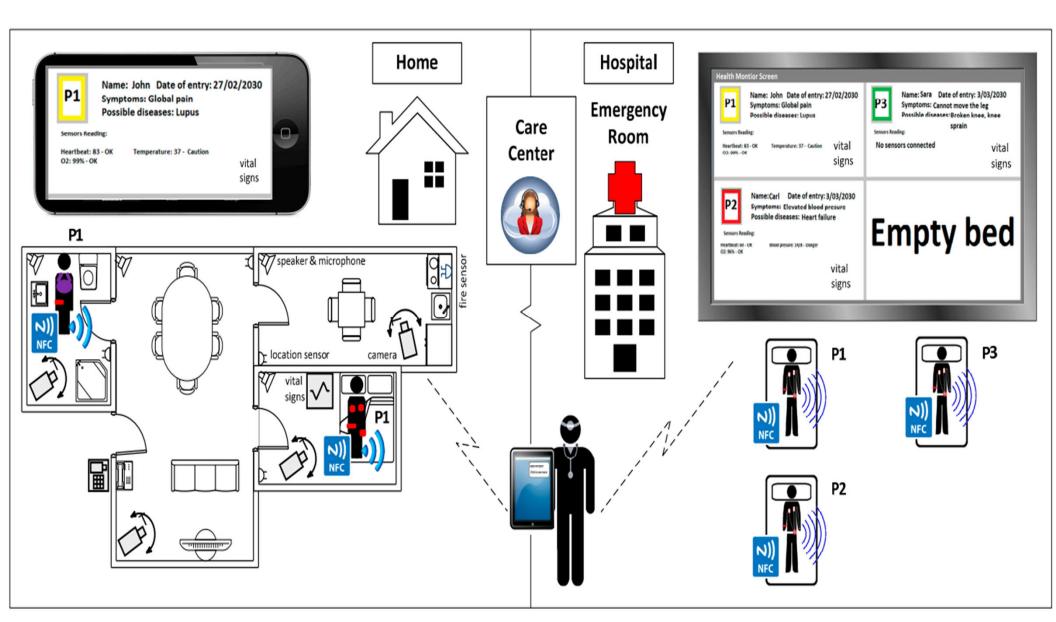
Cubo, J.; Nieto, A.; Pimentel, E. A Cloud-Based Internet of Things Platform for Ambient Assisted Living. Sensors 2014, 14, 14070-14105. https://doi.org/10.3390/s140814070

4 EXAMPLE 2: Emergency monitoring system (EMS)

- The system's components:
 - Sensor nodes measure basic vital signs a video camera with a complex behavior, a user badge to control the movements/vital signs...
 - Discovery application to find the existing sensors/devices in the environment, connect and associate with the patients
 - O Dashboard application medical professionals/care centers, to manage the monitored information; a cloud application for remote monitoring....
 - Data repository on a cloud platform with register of the user profile (patients, specialists/people at the remote care centers), maintaining a patient's schedule.

NO DE COUNTY OF THE PROPERTY O

4 EXAMPLE 2: Emergency monitoring system (EMS)



AGENDA

- 1 Introduction
- 2 Quality Data Aggregation in Health Domains
- 3 Data Al/ML Models Development Use of Models
- 4 Some Examples
- 5 Possibilities for Medical Education

6 Conclusions

5 Possibilities for Medical Education

 traditional medical education - often lacks contextual experience, limits effective application of theoretical knowledge in real-world scenarios.

 technology-driven changes - transform the way medical students learn, healthcare professionals train, the integration of XR, the metaverse and other

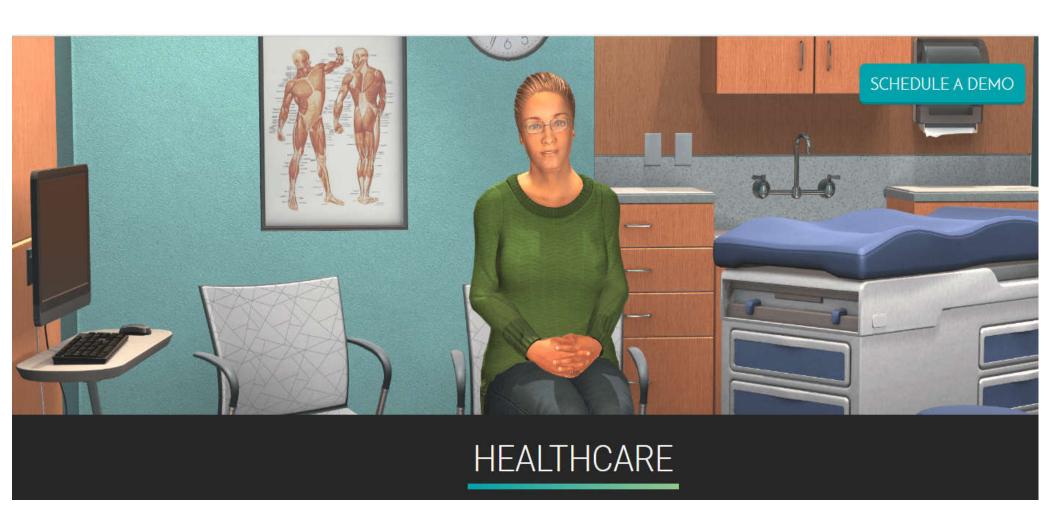
technologies into medical education

- assist educators and medical practitioners - comprehensive understanding of key factors in immersive education
- customized simulations enable practice in clinical decision-making, interpersonal skills, and exposure to complex medical situations in a controlled environment.
- various disciplines anatomy, physiology, dentistry, pathology..., benefit from immersive learning experiences.

1 Oplant

5 Personalized and E-coaching Medicine - Agents

- Virtual Standardized Patient Training & Therapy, Duke University



5 Personalized and E-coaching Medicine - Agents

- Mursion's virtual standardized patient (VSP) simulators offer medical educators a powerful tool to enhance a blend of technical and interpersonal skills:
 - Improving the communication skills of a doctor delivering a negative diagnosis
 - Increasing the effectiveness of therapy skills of psychologists
 - Enabling prospective nurses to master giving an effective patient history and coaching interview
 - Allowing pediatric healthcare providers to train in scenarios involving a parent and an elementary-age child
 - Enhancing the debriefing skills of a surgical team

Need to talk to someone NOW? Call this Helpline: 866-966-1020

Username: Password: Registration is OPTIONAL

Welcome Guests!

Learn more about profiles HERE

Hello, welcome to Simcoach.

Some things before we get started: I'm based on the real experiences of warfighters and their families, but I am not a real human, so please be patient with me, and talk in short sentences. Far as conversations go, I'm best at talking about PTSD and depression. I'm not a shrink, but I'm here to help.

I'd like to ask you a few questions to get to know you a bit. Ok?

I think I can help you better if I know where you're coming from.

no

по

that's ok

What's the major concern that brought you here today?

Alright I'll check those out. SEND

STREAM

NOTES

PRINT

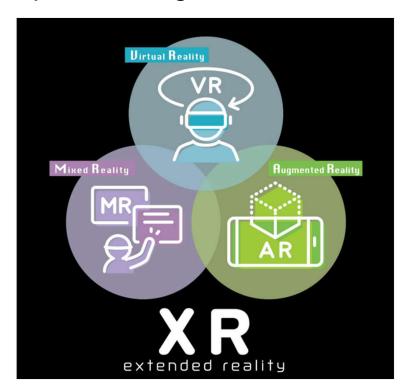
© 2010 USC Institute for Creative Technologies | Terms of Use | Confidentiality

Exit

5 Personalized and E-coaching Medicine - Agents

- Advancement of uses of virtual reality (VR) simulation technology for clinical purposes
- Mental health therapy, motor skills rehabilitation, cognitive assessment and clinical skills training
 - Mental and Behavioral Health assessment, training and treatment of stress-related disorders.
 - Game Based Rehabilitation comprehensive, evidence-based rehabilitation training approaches for hospital, clinic, client populations.
 - Neurocognitive Assessment and Training for individuals with stroke, traumatic brain injury and similar neurological disorders
 - Virtual Humans believable and more natural interactions; simulated standardized patients for medical training, and personalized coaches for rehabilitation and wellness

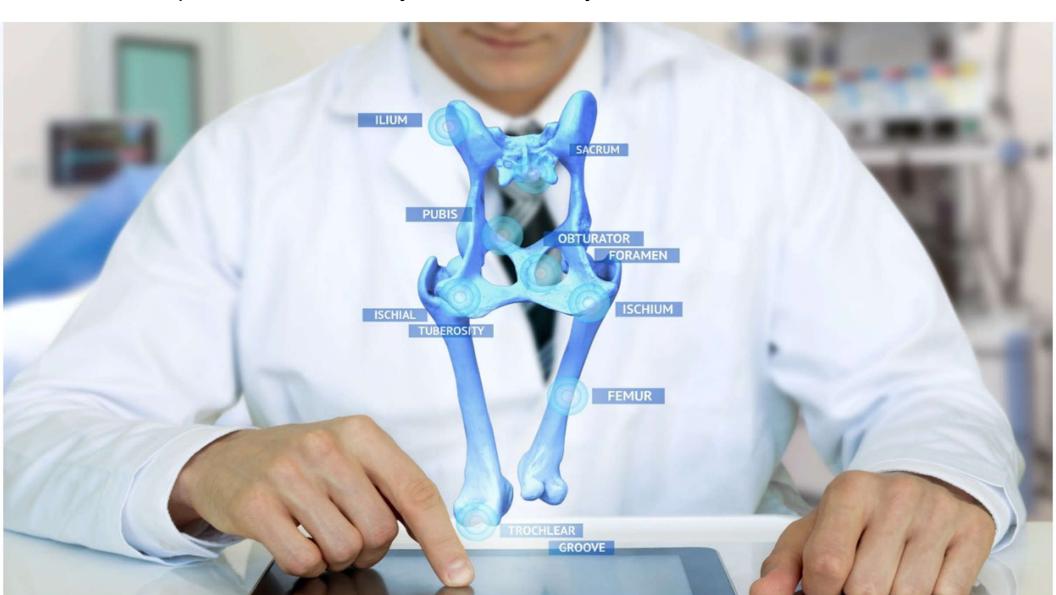
- XR Extended reality immersive technologies, including VR virtual reality, AR - Augmented reality, MR - Mixed reality
- HMD Head mounted display enhance interaction between the physical and virtual environments, improve and transform healthcare, benefiting patients, healthcare professionals,...
- Applications accurate symptom detection, rehabilitation and physical therapy, surgical planning and training, 3D medical imaging and provisioning immersive and interactive medical training, ...



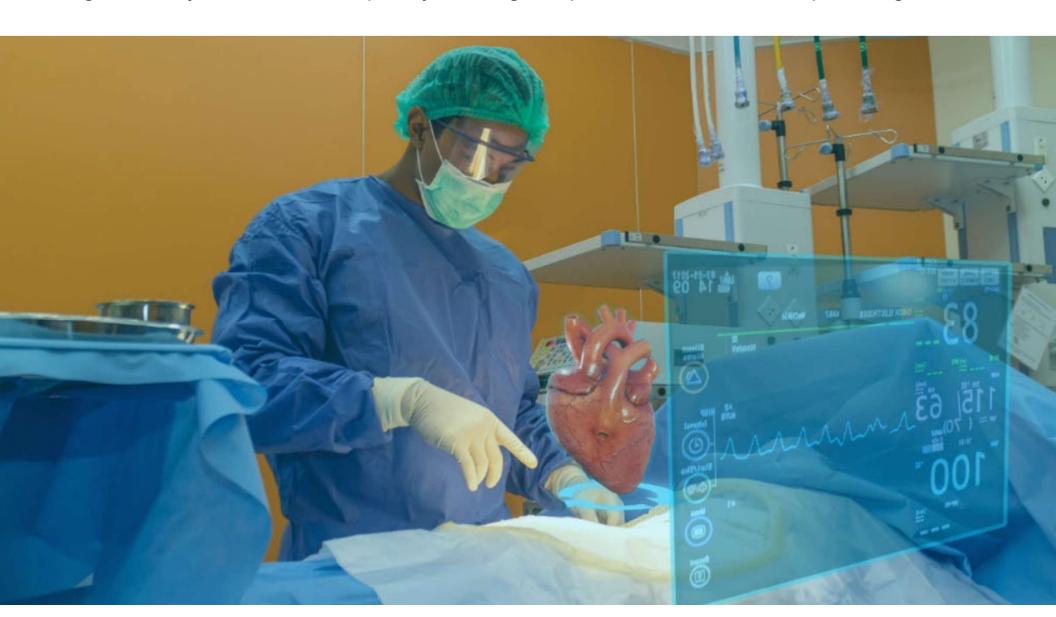
Education

- o Telesimulation telecommunication and immersive technologies can support education for remote learners (interaction, simulated patients, visual displays and facilitators in real time (laparoscopic surgery, robotic surgery, ...);
- o Telemonitoring enhancing medical education remotely, expert provides guidance to a less experienced learner, remote consultations, ...
- Innovative ways for anatomical education students can explore 3D views of the body without the limitations of cadaveric teaching.
- XR using holograms teach anatomy presenting 3D structures in the immediate learner environment

 A Finnish company developed SurgeryVision, allows view of MRI and CTscans in stereoscopic 3D format, study more efficiently anatomic abnormalities



Surgery education/simulation - offers a safe and realistic opportunity,
 significantly increase the quality of surgical performance in the operating room



AGENDA

- 1 Introduction
- 2 Quality Data Aggregation in Health Domains
- 3 Data AI/ML Models Development Use of Models
- 4 Some Examples
- 5 Possibilities for Medical Education
- 6 Conclusions

- Rapid development of range of ICT components has significant influence medicine and healthcare.
 - Health analytics advanced methods and models to analyze Big and Complex Data.
 - Predictive modeling smart models to predict behaviors, to prevent diseases and to personalize healthcare.
 - Visualization of data presentation of data in meaningful way to support reliable decision making.
 - Integration of mobile (hardware and software) technologies integration with data-platforms enable automated services and tailor feedback and recommendations.
 - Personal communication and recommendations between patient and virtual e-coach - agent technologies definitely could play extremely important role.

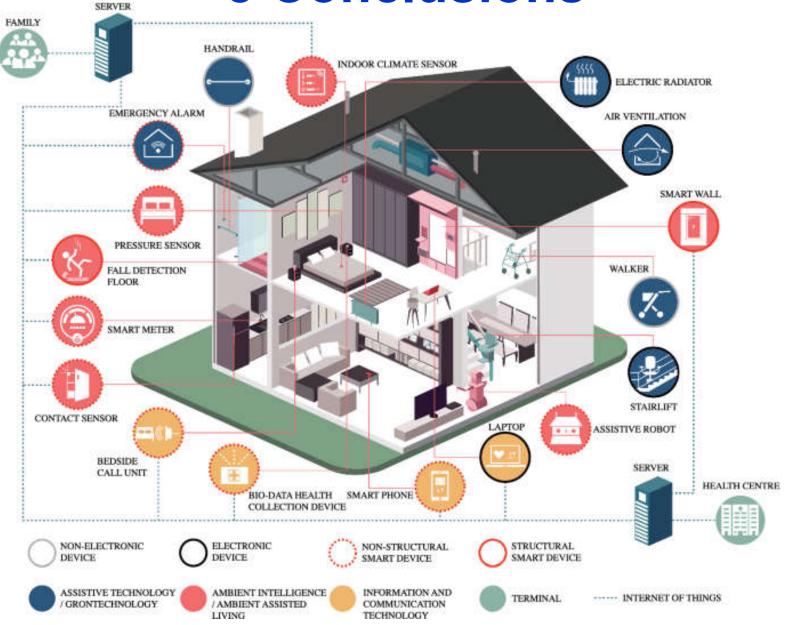
- Rapid development of range of ICT components has significant influence medicine and healthcare.
 - XR, Metaverse, Holograms offer enormous potential in all aspects, for physicians, caregivers, patients; diagnoses, treatment, followups, education
 - Large Language Models (LLMs) transforming medicine and healthcare by enhancing various aspects of patient care, medical research, and administrative tasks

Enhanced Clinical Support and Diagnosis:

- LLMs analyze medical literature and patient data to provide clinicians with potential diagnoses, treatment options, and personalized care plans.
- Med-PaLM 2 specifically designed to answer complex medical questions.
- Identify potential drug interactions, suggest optimal medication dosages, assist with personalized treatment planning based.

- LLMs Ethical Considerations and Challenges
 - Data privacy and security crucial protecting sensitive patient data, access controls, secure storage.
 - O Bias mitigation LLMs can inherit biases existing in training data, leading to skewed or unfair recommendations. Necessary: careful data curation, algorithmic adjustments, ongoing monitoring...
 - Hallucinations and misinformation inaccurate or misleading information. Human oversight and validation are necessary.
 - Over-reliance on AI Clinicians should not rely solely on LLM recommendations without proper validation.

Where to go further



Ma, C., Guerra-Santin, O. & Mohammadi, M. Smart home modification design strategies for ageing in place: a systematic review. *J Hous and the Built Environ* **37**, 625–664 (2022). https://doi.org/10.1007/s10901-021-09888-z

Some related references

- Xingyu Chen, Yuxiang Chen, Wei Liang, Dacheng He, Kuanching Li, Mirjana Ivanović, PHFL: a federated learning framework based on a hybrid mechanism. J Supercomput 81, 632 (2025). https://doi.org/10.1007/s11227-025-06433-w
- Mihailo Ilić, Mirjana Ivanović, Vladimir Kurbalija, Antonios Valachis, Towards optimal learning:
 Investigating the impact of different model updating strategies in federated learning, Expert Systems with Applications, Volume 249, Part A, 2024, 123553, ISSN 0957-4174
- Milos Savic, Vladimir Kurbalija, Mihailo Ilic, Mirjana Ivanovic, Dusan Jakovetic, Antonios Valachis, Serge Autexier, Johannes Rust, Thanos Kosmidis:, The application of machine learning techniques in prediction of quality of life features for cancer patients. Comput. Sci. Inf. Syst. 20(1): 381-404 (2023)
- Vladimir Kurbalija, Zoltan Geler, Tijana Vujanić Stankov, Igor Petrušić, Mirjana Ivanović, Igor Kononenko, Marija Semnic, Marko Daković, Robert Semnic, Zoran Bosnić, Analysis of neuropsychological and neuroradiological features for diagnosis of Alzheimer's disease and mild cognitive impairment, International Journal of Medical Informatics 178, 2023, 105195
- Mirjana Ivanovic, Serge Autexier, Miltiadis Kokkonidis & Johannes Rust (2023) Quality medical data management within an open Al architecture – cancer patients case, Connection Science, 35:1
- Lazaros Tzelves, Ioannis Manolitsis, Ioannis Varkarakis, Mirjana Ivanovic, Miltiadis Kokkonidis, Cristina Sabater Useros, Thanos Kosmidis, Montserrat Muñoz, Imma Grau, Manos Athanatos, Anamaria Vizitiu, Konstantinos Lampropoulos, Tzortzia Koutsouri, Dimitra Stefanatou, Konstantinos Perrakis, Christina Stratigaki, Serge Autexier, Paris Kosmidis, Antonis Valachis, Artificial intelligence supporting cancer patients across Europe—The ASCAPE project, PloS one 17, no. 4 (2022): e0265127

How Artificial Intelligence Changes Medical Diagnosis, Treatment, and Education

Mirjana Ivanović

University of Novi Sad, Faculty of Sciences, Novi Sad, Serbia mira@dmi.uns.ac.rs

